論文の概要: Wasserstein Learning of Determinantal Point Processes
- arxiv url: http://arxiv.org/abs/2011.09712v1
- Date: Thu, 19 Nov 2020 08:30:57 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-23 21:54:45.683324
- Title: Wasserstein Learning of Determinantal Point Processes
- Title(参考訳): 決定的点過程のwasserstein学習
- Authors: Lucas Anquetil, Mike Gartrell, Alain Rakotomamonjy, Ugo Tanielian,
Cl\'ement Calauz\`enes
- Abstract要約: 本稿では,観測された部分集合からなるモデルとデータ間のワッサーシュタイン距離を最小化する新しいDPP学習手法を提案する。
MLEを用いて学習したDPPと比較して,我々のWasserstein学習アプローチは,生成タスクにおける予測性能を著しく向上させることを示した。
- 参考スコア(独自算出の注目度): 14.790452282691252
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Determinantal point processes (DPPs) have received significant attention as
an elegant probabilistic model for discrete subset selection. Most prior work
on DPP learning focuses on maximum likelihood estimation (MLE). While efficient
and scalable, MLE approaches do not leverage any subset similarity information
and may fail to recover the true generative distribution of discrete data. In
this work, by deriving a differentiable relaxation of a DPP sampling algorithm,
we present a novel approach for learning DPPs that minimizes the Wasserstein
distance between the model and data composed of observed subsets. Through an
evaluation on a real-world dataset, we show that our Wasserstein learning
approach provides significantly improved predictive performance on a generative
task compared to DPPs trained using MLE.
- Abstract(参考訳): 決定的点過程(dpps)は離散部分集合選択のエレガントな確率モデルとして注目されている。
DPP学習におけるほとんどの先行研究は、最大推定(MLE)に焦点を当てている。
効率的かつスケーラブルなMLEアプローチでは、サブセットの類似性情報を一切利用せず、離散データの真の生成分布の回復に失敗する可能性がある。
本研究では、DPPサンプリングアルゴリズムの微分緩和を導出することにより、観測された部分集合からなるモデルとデータ間のワッサーシュタイン距離を最小化する新しいDPP学習手法を提案する。
実世界のデータセットを評価した結果、我々のWasserstein学習アプローチは、MLEを用いて訓練されたDPPと比較して、生成タスクにおける予測性能を大幅に改善することを示した。
関連論文リスト
- Near-Optimal Learning and Planning in Separated Latent MDPs [70.88315649628251]
我々は、潜在マルコフ決定過程(LMDP)の計算的および統計的側面について研究する。
このモデルでは、学習者は、未知のMDPの混合から各エポックの開始時に描画されたMDPと相互作用する。
論文 参考訳(メタデータ) (2024-06-12T06:41:47Z) - Querying Easily Flip-flopped Samples for Deep Active Learning [63.62397322172216]
アクティブラーニング(英: Active Learning)は、ラベルのないデータを戦略的に選択してクエリすることで、モデルの性能を向上させることを目的とした機械学習パラダイムである。
効果的な選択戦略の1つはモデルの予測の不確実性に基づくもので、サンプルがどの程度情報的であるかの尺度として解釈できる。
本稿では,予測されたラベルの不一致の最小確率として,最小不一致距離(LDM)を提案する。
論文 参考訳(メタデータ) (2024-01-18T08:12:23Z) - Optimal Sample Selection Through Uncertainty Estimation and Its
Application in Deep Learning [22.410220040736235]
コアセット選択とアクティブラーニングの両方に対処するための理論的に最適な解を提案する。
提案手法であるCOPSは,サブサンプルデータに基づいてトレーニングされたモデルの損失を最小限に抑えるために設計されている。
論文 参考訳(メタデータ) (2023-09-05T14:06:33Z) - Provably Efficient Representation Learning with Tractable Planning in
Low-Rank POMDP [81.00800920928621]
部分的に観測可能なマルコフ決定過程(POMDP)における表現学習の研究
まず,不確実性(OFU)に直面した最大推定(MLE)と楽観性を組み合わせた復調性POMDPのアルゴリズムを提案する。
次に、このアルゴリズムをより広範な$gamma$-observable POMDPのクラスで機能させる方法を示す。
論文 参考訳(メタデータ) (2023-06-21T16:04:03Z) - Nonparametric estimation of continuous DPPs with kernel methods [0.0]
パラメトリックおよび非パラメトリック推論法は、有限の場合、すなわち、点パターンが有限の基底集合に存在する場合において提案されている。
我々は、この最大可能性(MLE)問題の制限バージョンが、RKHSにおける非負関数に対する最近の表現定理の範囲内にあることを示す。
この有限次元問題を解くための固定点アルゴリズムを提案し,解析し,実証する。
論文 参考訳(メタデータ) (2021-06-27T11:57:14Z) - Towards Deterministic Diverse Subset Sampling [14.236193187116049]
本稿では,k-DPPのグリーディ決定論的適応について論じる。
画像検索作業におけるモデルの有用性を示す。
論文 参考訳(メタデータ) (2021-05-28T16:05:58Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
観察ifoからの模倣学習において、学習エージェントは、実演者の生成した制御信号にアクセスせずに、実演行動の観察のみを用いて実演エージェントを模倣しようとする。
近年、逆模倣学習に基づく手法は、ifO問題に対する最先端のパフォーマンスをもたらすが、データ非効率でモデルなしの強化学習アルゴリズムに依存するため、サンプルの複雑さに悩まされることが多い。
この問題は、サンプルの収集が時間、エネルギー、およびリスクの面で高いコストを被る可能性がある現実世界の設定に展開することは非現実的です。
よりデータ効率の高いifOアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-31T23:46:32Z) - Optimal transport framework for efficient prototype selection [21.620708125860066]
最適なトランスポート(ot)ベースのフレームワークを開発し、与えられたターゲットデータセットを最もよく表現する有益な例を選定する。
目的関数は部分モジュラリティの重要な特性を享受し、計算速度と決定論的近似保証を持つ並列化可能なグリーディ法を提案する。
論文 参考訳(メタデータ) (2021-03-18T10:50:14Z) - Prototypical Contrastive Learning of Unsupervised Representations [171.3046900127166]
原型コントラスト学習(Prototypeal Contrastive Learning, PCL)は、教師なし表現学習法である。
PCLは暗黙的にデータのセマンティック構造を学習された埋め込み空間にエンコードする。
PCLは、複数のベンチマークで最先端のインスタンスワイド・コントラスト学習法より優れている。
論文 参考訳(メタデータ) (2020-05-11T09:53:36Z) - User-Level Privacy-Preserving Federated Learning: Analysis and
Performance Optimization [77.43075255745389]
フェデレートラーニング(FL)は、データを有用なモデルにトレーニングしながら、モバイル端末(MT)からプライベートデータを保存することができる。
情報理論の観点からは、MTがアップロードした共有モデルから、好奇心の強いサーバがプライベートな情報を推測することが可能である。
サーバにアップロードする前に、共有モデルに人工ノイズを加えることで、ユーザレベルの差分プライバシー(UDP)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-02-29T10:13:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。