Coupling spins to nanomechanical resonators: Toward quantum
spin-mechanics
- URL: http://arxiv.org/abs/2011.09990v1
- Date: Thu, 19 Nov 2020 17:39:51 GMT
- Title: Coupling spins to nanomechanical resonators: Toward quantum
spin-mechanics
- Authors: Hailin Wang and Ignas Lekavicius
- Abstract summary: Spin-mechanics studies interactions between spin systems and mechanical vibrations in a nanomechanical resonator.
In this tutorial, we summarize various types of spin-mechanical resonators and discuss both the cavity-QED-like and the trapped-ion-like spin-mechanical coupling processes.
- Score: 2.4366811507669124
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Spin-mechanics studies interactions between spin systems and mechanical
vibrations in a nanomechanical resonator and explores their potential
applications in quantum information processing. In this tutorial, we summarize
various types of spin-mechanical resonators and discuss both the
cavity-QED-like and the trapped-ion-like spin-mechanical coupling processes.
The implementation of these processes using negatively charged nitrogen vacancy
and silicon vacancy centers in diamond is reviewed. Prospects for reaching the
full quantum regime of spin-mechanics, in which quantum control can occur at
the level of both single spin and single phonon, are discussed with an emphasis
on the crucial role of strain coupling to the orbital degrees of freedom of the
defect centers.
Related papers
- Spin Squeezing of Macroscopic Nuclear Spin Ensembles [44.99833362998488]
Squeezing macroscopic spin ensembles may prove to be a useful technique for fundamental physics experiments.
We analyze the squeezing dynamics in the presence of decoherence and finite spin polarization, showing that achieving 7 dB spin squeezing is feasible in several nuclear spin systems.
arXiv Detail & Related papers (2025-02-19T21:16:54Z) - Quantum State Transfer in a Magnetic Atoms Chain Using a Scanning Tunneling Microscope [44.99833362998488]
The electric control of quantum spin chains has been an outstanding goal for the few last years due to its potential use in technologies related to quantum information processing.
We show the feasibility of the different steps necessary to perform controlled quantum state transfer in a $S=1/2$ titanium atoms chain employing the electric field produced by a Scanning Tunneling Microscope (STM)
arXiv Detail & Related papers (2024-08-13T14:45:46Z) - Coupling a single spin to high-frequency motion [0.025360731184360698]
High-frequency mechanical resonators open a range of possibilities when coupled to single spins.
New mechanism gives rise to this coupling, which stems from spin-orbit coupling.
Results propel spin-mechanical platforms to an uncharted regime.
arXiv Detail & Related papers (2024-02-29T15:52:53Z) - Programmable Quantum Processors based on Spin Qubits with
Mechanically-Mediated Interactions and Transport [0.0]
We describe a method for programmable control of multi-qubit spin systems.
We show coherent manipulation and mechanical transport of a proximal spin qubit by utilizing nuclear spin memory.
With realistic improvements the high-cooperativity regime can be reached, offering a new avenue towards scalable quantum information processing with spin qubits.
arXiv Detail & Related papers (2023-07-23T00:52:19Z) - Quantum parametric amplifiation of phonon-mediated magnon-spin
interaction [12.464802118191724]
We show how to strongly couple the magnon modes in a hybrid tripartite system.
The coherent magnon-phonon coupling is engineered by introducing the quantum parametric amplifiation of the mechanical motion.
Our work opens up prospects for developing novel quantum transducers, quantum memories and high-precision measurements.
arXiv Detail & Related papers (2023-07-22T02:33:28Z) - Enhanced tripartite interactions in spin-magnon-mechanical hybrid
systems [0.0]
We predict a tripartite coupling mechanism in a hybrid setup comprising a single NV center and a micromagnet.
We propose to realize direct and strong tripartite interactions among single NV spins, magnons and phonons via modulating the relative motion between the NV center and the micromagnet.
arXiv Detail & Related papers (2023-01-25T06:31:27Z) - Probing the symmetry breaking of a light--matter system by an ancillary
qubit [50.591267188664666]
Hybrid quantum systems in the ultrastrong, and even more in the deep-strong, coupling regimes can exhibit exotic physical phenomena.
We experimentally observe the parity symmetry breaking of an ancillary Xmon artificial atom induced by the field of a lumped-element superconducting resonator.
This result opens a way to experimentally explore the novel quantum-vacuum effects emerging in the deep-strong coupling regime.
arXiv Detail & Related papers (2022-09-13T06:14:08Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Anisotropic electron-nuclear interactions in a rotating quantum spin
bath [55.41644538483948]
Spin-bath interactions are strongly anisotropic, and rapid physical rotation has long been used in solid-state nuclear magnetic resonance.
We show that the interaction between electron spins of nitrogen-vacancy centers and a bath of $13$C nuclear spins introduces decoherence into the system.
Our findings offer new insights into the use of physical rotation for quantum control with implications for quantum systems having motional and rotational degrees of freedom that are not fixed.
arXiv Detail & Related papers (2021-05-16T06:15:00Z) - Spin-mechanics with nitrogen-vacancy centers and trapped particles [0.0]
We review recent experimental work in the field of spin-mechanics that employ the interaction between trapped particles and electronic spins in the solid state.
Our focus is on the theoretical background close to the current experiments, as well as on the experimental limits, that will enable these systems to unleash their full potential.
arXiv Detail & Related papers (2021-04-20T20:43:24Z) - Chemical tuning of spin clock transitions in molecular monomers based on
nuclear spin-free Ni(II) [52.259804540075514]
We report the existence of a sizeable quantum tunnelling splitting between the two lowest electronic spin levels of mononuclear Ni complexes.
The level anti-crossing, or magnetic clock transition, associated with this gap has been directly monitored by heat capacity experiments.
The comparison of these results with those obtained for a Co derivative, for which tunnelling is forbidden by symmetry, shows that the clock transition leads to an effective suppression of intermolecular spin-spin interactions.
arXiv Detail & Related papers (2021-03-04T13:31:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.