Teaching Key Machine Learning Principles Using Anti-learning Datasets
- URL: http://arxiv.org/abs/2011.10660v1
- Date: Mon, 16 Nov 2020 05:43:40 GMT
- Title: Teaching Key Machine Learning Principles Using Anti-learning Datasets
- Authors: Chris Roadknight, Prapa Rattadilok, Uwe Aickelin
- Abstract summary: We advocate the teaching of alternative methods of generalising to the best possible solution.
Students can achieve a deeper understanding of the importance of validation on data excluded from the training process.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Much of the teaching of machine learning focuses on iterative hill-climbing
approaches and the use of local knowledge to gain information leading to local
or global maxima. In this paper we advocate the teaching of alternative methods
of generalising to the best possible solution, including a method called
anti-learning. By using simple teaching methods, students can achieve a deeper
understanding of the importance of validation on data excluded from the
training process and that each problem requires its own methods to solve. We
also exemplify the requirement to train a model using sufficient data by
showing that different granularities of cross-validation can yield very
different results.
Related papers
- A Unified Framework for Continual Learning and Unlearning [9.538733681436836]
Continual learning and machine unlearning are crucial challenges in machine learning, typically addressed separately.
We introduce a new framework that jointly tackles both tasks by leveraging controlled knowledge distillation.
Our approach enables efficient learning with minimal forgetting and effective targeted unlearning.
arXiv Detail & Related papers (2024-08-21T06:49:59Z) - Learn while Unlearn: An Iterative Unlearning Framework for Generative Language Models [49.043599241803825]
Iterative Contrastive Unlearning (ICU) framework consists of three core components.
A Knowledge Unlearning Induction module removes specific knowledge through an unlearning loss.
A Contrastive Learning Enhancement module to preserve the model's expressive capabilities against the pure unlearning goal.
And an Iterative Unlearning Refinement module that dynamically assess the unlearning extent on specific data pieces and make iterative update.
arXiv Detail & Related papers (2024-07-25T07:09:35Z) - Towards Automated Knowledge Integration From Human-Interpretable Representations [55.2480439325792]
We introduce and motivate theoretically the principles of informed meta-learning enabling automated and controllable inductive bias selection.
We empirically demonstrate the potential benefits and limitations of informed meta-learning in improving data efficiency and generalisation.
arXiv Detail & Related papers (2024-02-25T15:08:37Z) - Knowledge Distillation for Road Detection based on cross-model Semi-Supervised Learning [17.690698736544626]
We propose an integrated approach that combines knowledge distillation and semi-supervised learning methods.
This hybrid approach leverages the robust capabilities of large models to effectively utilise large unlabelled data.
The proposed semi-supervised learning-based knowledge distillation (SSLKD) approach demonstrates a notable improvement in the performance of the student model.
arXiv Detail & Related papers (2024-02-07T22:50:47Z) - MinT: Boosting Generalization in Mathematical Reasoning via Multi-View
Fine-Tuning [53.90744622542961]
Reasoning in mathematical domains remains a significant challenge for small language models (LMs)
We introduce a new method that exploits existing mathematical problem datasets with diverse annotation styles.
Experimental results show that our strategy enables a LLaMA-7B model to outperform prior approaches.
arXiv Detail & Related papers (2023-07-16T05:41:53Z) - Implicit Offline Reinforcement Learning via Supervised Learning [83.8241505499762]
Offline Reinforcement Learning (RL) via Supervised Learning is a simple and effective way to learn robotic skills from a dataset collected by policies of different expertise levels.
We show how implicit models can leverage return information and match or outperform explicit algorithms to acquire robotic skills from fixed datasets.
arXiv Detail & Related papers (2022-10-21T21:59:42Z) - Understanding the World Through Action [91.3755431537592]
I will argue that a general, principled, and powerful framework for utilizing unlabeled data can be derived from reinforcement learning.
I will discuss how such a procedure is more closely aligned with potential downstream tasks.
arXiv Detail & Related papers (2021-10-24T22:33:52Z) - On Data Efficiency of Meta-learning [17.739215706060605]
We study the often overlooked aspect of the modern meta-learning algorithms -- their data efficiency.
We introduce a new simple framework for evaluating meta-learning methods under a limit on the available supervision.
We propose active meta-learning, which incorporates active data selection into learning-to-learn, leading to better performance of all methods in the limited supervision regime.
arXiv Detail & Related papers (2021-01-30T01:44:12Z) - An analysis on the use of autoencoders for representation learning:
fundamentals, learning task case studies, explainability and challenges [11.329636084818778]
In many machine learning tasks, learning a good representation of the data can be the key to building a well-performant solution.
We present a series of learning tasks: data embedding for visualization, image denoising, semantic hashing, detection of abnormal behaviors and instance generation.
A solution is proposed for each task employing autoencoders as the only learning method.
arXiv Detail & Related papers (2020-05-21T08:41:57Z) - Provable Meta-Learning of Linear Representations [114.656572506859]
We provide fast, sample-efficient algorithms to address the dual challenges of learning a common set of features from multiple, related tasks, and transferring this knowledge to new, unseen tasks.
We also provide information-theoretic lower bounds on the sample complexity of learning these linear features.
arXiv Detail & Related papers (2020-02-26T18:21:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.