論文の概要: Generative Learning of Heterogeneous Tail Dependence
- arxiv url: http://arxiv.org/abs/2011.13132v1
- Date: Thu, 26 Nov 2020 05:34:31 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-20 12:23:51.007782
- Title: Generative Learning of Heterogeneous Tail Dependence
- Title(参考訳): 不均一な末尾依存の生成学習
- Authors: Xiangqian Sun, Xing Yan, Qi Wu
- Abstract要約: 我々のモデルは、各次元のすべての対の間の不均一かつ非対称なテール依存を特徴とする。
パラメータを学習するための新しいモーメント学習アルゴリズムを考案する。
その結果、このフレームワークはコプラベースのベンチマークと比較すると、より優れた有限サンプル性能が得られることがわかった。
- 参考スコア(独自算出の注目度): 15.8264774383576
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a multivariate generative model to capture the complex dependence
structure often encountered in business and financial data. Our model features
heterogeneous and asymmetric tail dependence between all pairs of individual
dimensions while also allowing heterogeneity and asymmetry in the tails of the
marginals. A significant merit of our model structure is that it is not prone
to error propagation in the parameter estimation process, hence very scalable,
as the dimensions of datasets grow large. However, the likelihood methods are
infeasible for parameter estimation in our case due to the lack of a
closed-form density function. Instead, we devise a novel moment learning
algorithm to learn the parameters. To demonstrate the effectiveness of the
model and its estimator, we test them on simulated as well as real-world
datasets. Results show that this framework gives better finite-sample
performance compared to the copula-based benchmarks as well as recent similar
models.
- Abstract(参考訳): ビジネスデータや財務データでしばしば発生する複雑な依存構造を捉えるための多変量生成モデルを提案する。
我々のモデルは、各次元のすべての対間の不均一かつ非対称なテール依存を特徴とし、また、辺縁のテールにおける不均一性と非対称性を許容する。
モデル構造の重要な利点は,データセットの次元が大きくなるにつれて,パラメータ推定プロセスにおける誤差の伝播が難しくなるため,非常にスケーラブルである点である。
しかし,この場合のパラメータ推定には,閉形式密度関数の欠如による可能性推定は不可能である。
代わりに、パラメータを学習するための新しいモーメント学習アルゴリズムを考案する。
モデルとその推定器の有効性を実証するために,シミュレーションおよび実世界のデータセットを用いて実験を行った。
その結果、このフレームワークはコプラベースのベンチマークや最近の類似モデルと比較して、より優れた有限サンプル性能が得られることがわかった。
関連論文リスト
- Latent Semantic Consensus For Deterministic Geometric Model Fitting [109.44565542031384]
我々はLSC(Latent Semantic Consensus)と呼ばれる効果的な方法を提案する。
LSCは、モデルフィッティング問題をデータポイントとモデル仮説に基づく2つの潜在意味空間に定式化する。
LSCは、一般的な多構造モデルフィッティングのために、数ミリ秒以内で一貫した、信頼性の高いソリューションを提供することができる。
論文 参考訳(メタデータ) (2024-03-11T05:35:38Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
本稿では,自己消費ループ内で生成モデルを訓練する新たな課題に取り組む。
我々は,このトレーニングが将来のモデルで学習したデータ分布に与える影響を厳格に評価するための理論的枠組みを構築した。
カーネル密度推定の結果は,混合データトレーニングがエラー伝播に与える影響など,微妙な洞察を与える。
論文 参考訳(メタデータ) (2024-02-19T02:08:09Z) - Variable Importance Matching for Causal Inference [73.25504313552516]
これらの目標を達成するためのModel-to-Matchと呼ばれる一般的なフレームワークについて説明する。
Model-to-Matchは、距離メートル法を構築するために変数重要度測定を使用する。
LASSO を用いて Model-to-Match フレームワークを運用する。
論文 参考訳(メタデータ) (2023-02-23T00:43:03Z) - Benign Overfitting in Time Series Linear Model with
Over-Parameterization [5.68558935178946]
複数の依存型に基づく推定器の過大なリスクの理論を考案する。
短期記憶プロセスにおけるリスクの収束率は、独立データの場合と同一であることを示す。
論文 参考訳(メタデータ) (2022-04-18T15:26:58Z) - Nonparametric Functional Analysis of Generalized Linear Models Under
Nonlinear Constraints [0.0]
本稿では、一般化線形モデルのための新しい非パラメトリック方法論を紹介する。
これは二項回帰の強さとカテゴリーデータに対する潜在変数の定式化の強さを組み合わせたものである。
これは最近公開された方法論のパラメトリックバージョンを拡張し、一般化する。
論文 参考訳(メタデータ) (2021-10-11T04:49:59Z) - T-LoHo: A Bayesian Regularization Model for Structured Sparsity and
Smoothness on Graphs [0.0]
グラフ構造化データでは、構造化されたスパーシリティと滑らかさが団結する傾向にある。
グラフィカルな関係を持つ高次元パラメータに先立って提案する。
構造された空間と滑らかさを同時に検出するために使用します。
論文 参考訳(メタデータ) (2021-07-06T10:10:03Z) - Post-mortem on a deep learning contest: a Simpson's paradox and the
complementary roles of scale metrics versus shape metrics [61.49826776409194]
我々は、ニューラルネットワーク(NN)モデルの一般化精度を予測するために、コンテストで公に利用可能にされたモデルのコーパスを分析する。
メトリクスが全体としてよく機能するが、データのサブパーティションではあまり機能しない。
本稿では,データに依存しない2つの新しい形状指標と,一連のNNのテスト精度の傾向を予測できるデータ依存指標を提案する。
論文 参考訳(メタデータ) (2021-06-01T19:19:49Z) - Slice Sampling for General Completely Random Measures [74.24975039689893]
本稿では, 後続推定のためのマルコフ連鎖モンテカルロアルゴリズムについて, 補助スライス変数を用いてトランケーションレベルを適応的に設定する。
提案アルゴリズムの有効性は、いくつかの一般的な非パラメトリックモデルで評価される。
論文 参考訳(メタデータ) (2020-06-24T17:53:53Z) - Amortized Bayesian model comparison with evidential deep learning [0.12314765641075436]
本稿では,専門的なディープラーニングアーキテクチャを用いたベイズモデルの比較手法を提案する。
提案手法は純粋にシミュレーションベースであり,観測された各データセットに対して,すべての代替モデルを明示的に適合させるステップを回避している。
提案手法は,本研究で検討した事例に対して,精度,キャリブレーション,効率の点で優れた結果が得られることを示す。
論文 参考訳(メタデータ) (2020-04-22T15:15:46Z) - Machine learning for causal inference: on the use of cross-fit
estimators [77.34726150561087]
より優れた統計特性を得るために、二重ローバストなクロスフィット推定器が提案されている。
平均因果効果(ACE)に対する複数の推定器の性能評価のためのシミュレーション研究を行った。
機械学習で使用する場合、二重確率のクロスフィット推定器は、バイアス、分散、信頼区間のカバレッジで他のすべての推定器よりも大幅に優れていた。
論文 参考訳(メタデータ) (2020-04-21T23:09:55Z) - Predicting Multidimensional Data via Tensor Learning [0.0]
本研究では,本データセットの内在的多次元構造を保持するモデルを開発する。
モデルパラメータを推定するために、オルタネート・リースト・スクエアスアルゴリズムを開発した。
提案モデルは,予測文献に存在するベンチマークモデルより優れている。
論文 参考訳(メタデータ) (2020-02-11T11:57:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。