論文の概要: Braid: Weaving Symbolic and Neural Knowledge into Coherent Logical
Explanations
- arxiv url: http://arxiv.org/abs/2011.13354v4
- Date: Sun, 5 Dec 2021 02:34:30 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-20 08:47:02.514563
- Title: Braid: Weaving Symbolic and Neural Knowledge into Coherent Logical
Explanations
- Title(参考訳): braid:シンボリックとニューラルの知識をコヒーレントな論理説明に織り込む
- Authors: Aditya Kalyanpur, Tom Breloff, David Ferrucci
- Abstract要約: ブレイドは確率論的ルールを支持する新しい論理的理性である。
本稿では、Braidで使用される推論アルゴリズムとその分散タスクベースのフレームワークによる実装について述べる。
ROCストーリークローゼテストにおけるブレイドの評価を行い,最先端の結果に近づいた結果を得た。
- 参考スコア(独自算出の注目度): 0.9023847175654603
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Traditional symbolic reasoning engines, while attractive for their precision
and explicability, have a few major drawbacks: the use of brittle inference
procedures that rely on exact matching (unification) of logical terms, an
inability to deal with uncertainty, and the need for a precompiled rule-base of
knowledge (the "knowledge acquisition" problem). To address these issues, we
devise a novel logical reasoner called Braid, that supports probabilistic
rules, and uses the notion of custom unification functions and dynamic rule
generation to overcome the brittle matching and knowledge-gap problem prevalent
in traditional reasoners. In this paper, we describe the reasoning algorithms
used in Braid, and their implementation in a distributed task-based framework
that builds proof/explanation graphs for an input query. We use a simple QA
example from a children's story to motivate Braid's design and explain how the
various components work together to produce a coherent logical explanation.
Finally, we evaluate Braid on the ROC Story Cloze test and achieve close to
state-of-the-art results while providing frame-based explanations.
- Abstract(参考訳): 従来の記号推論エンジンは精度と説明可能性に魅力があるが、論理項の正確なマッチング(統一)に依存する脆い推論手順の使用、不確実性に対処できないこと、事前コンパイルされた知識のルールベースの必要性(知識獲得問題)など、いくつかの大きな欠点がある。
これらの問題に対処するため、我々は確率的ルールをサポートする新しい論理推論器braidを開発し、従来の推論器で一般的な脆性マッチングと知識収集問題を克服するためにカスタム統一関数と動的ルール生成の概念を使用する。
本稿では,braidで使用される推論アルゴリズムと,入力クエリの証明/説明グラフを構築する分散タスクベースフレームワークの実装について述べる。
子どもの物語の簡単なqa例を使って、braidの設計を動機付け、様々なコンポーネントがどのように連携し、一貫性のある論理的な説明を生み出すかを説明します。
最後に, ROC Story Cloze テストにおける Braid の評価を行い, フレームベースの説明を提供しながら, 最先端の成果に近づいた。
関連論文リスト
- Neural Probabilistic Logic Learning for Knowledge Graph Reasoning [10.473897846826956]
本稿では,知識グラフの正確な推論を実現するための推論フレームワークを設計することを目的とする。
本稿では,組込みネットワークの表現力を効果的に向上するスコアリングモジュールを提案する。
我々は,変分推論に基づくマルコフ論理ネットワークを組み込むことにより,モデルの解釈可能性を向上させる。
論文 参考訳(メタデータ) (2024-07-04T07:45:46Z) - Semantic Objective Functions: A distribution-aware method for adding logical constraints in deep learning [4.854297874710511]
制約付き学習と知識蒸留技術は有望な結果を示した。
本稿では,機械学習モデルに知識を付加した論理的制約を組み込むロスベース手法を提案する。
本手法は,論理的制約のある分類タスクを含む,様々な学習課題において評価する。
論文 参考訳(メタデータ) (2024-05-03T19:21:47Z) - Large Language Models as Analogical Reasoners [155.9617224350088]
CoT(Chain-of- Thought)は、言語モデルのプロンプトとして、推論タスク全体で素晴らしいパフォーマンスを示す。
そこで本稿では,大規模言語モデルの推論プロセスを自動的にガイドする,新たなプロンプト手法であるアナログプロンプトを導入する。
論文 参考訳(メタデータ) (2023-10-03T00:57:26Z) - Modeling Hierarchical Reasoning Chains by Linking Discourse Units and
Key Phrases for Reading Comprehension [80.99865844249106]
本稿では,論理的推論の基盤として,対話レベルと単語レベルの両方の文脈を扱う総合グラフネットワーク(HGN)を提案する。
具体的には、ノードレベルの関係とタイプレベルの関係は、推論過程におけるブリッジと解釈できるが、階層的な相互作用機構によってモデル化される。
論文 参考訳(メタデータ) (2023-06-21T07:34:27Z) - Boosting Language Models Reasoning with Chain-of-Knowledge Prompting [18.326858925174605]
CoK(Chain-of-Knowledge)は、構造三重の形で明確な知識証拠を引き出すことを目的としている。
さらに, 推論チェーンの信頼性を推定するF2-Verification法を導入する。
広汎な実験により,本手法はコモンセンス,事実,記号,算術的推論タスクの性能をさらに向上させることができることが示された。
論文 参考訳(メタデータ) (2023-06-10T12:42:36Z) - MetaLogic: Logical Reasoning Explanations with Fine-Grained Structure [129.8481568648651]
複雑な実生活シナリオにおけるモデルの論理的推論能力を調べるためのベンチマークを提案する。
推論のマルチホップ連鎖に基づいて、説明形式は3つの主成分を含む。
この新たな説明形式を用いて,現在のベストモデルの性能を評価した。
論文 参考訳(メタデータ) (2022-10-22T16:01:13Z) - Discourse-Aware Graph Networks for Textual Logical Reasoning [142.0097357999134]
パッセージレベルの論理関係は命題単位間の係り合いまたは矛盾を表す(例、結論文)
論理的推論QAを解くための論理構造制約モデリングを提案し、談話対応グラフネットワーク(DAGN)を導入する。
ネットワークはまず、インラインの談話接続とジェネリック論理理論を利用した論理グラフを構築し、その後、エッジ推論機構を用いて論理関係を進化させ、グラフ機能を更新することで論理表現を学習する。
論文 参考訳(メタデータ) (2022-07-04T14:38:49Z) - Joint Abductive and Inductive Neural Logical Reasoning [44.36651614420507]
結合誘導型および誘導型ニューラル論理推論(AI-NLR)の問題点を定式化する。
まず、概念の源を提供するために、記述論理に基づく存在論的公理を組み込む。
そして、概念とクエリをファジィ集合として表現し、すなわち、要素がメンバシップの度合いを持つ集合を概念とクエリをエンティティでブリッジする。
論文 参考訳(メタデータ) (2022-05-29T07:41:50Z) - Logical Satisfiability of Counterfactuals for Faithful Explanations in
NLI [60.142926537264714]
本稿では, 忠実度スルー・カウンタファクトの方法論について紹介する。
これは、説明に表される論理述語に基づいて、反実仮説を生成する。
そして、そのモデルが表現された論理と反ファクトの予測が一致しているかどうかを評価する。
論文 参考訳(メタデータ) (2022-05-25T03:40:59Z) - Fact-driven Logical Reasoning for Machine Reading Comprehension [82.58857437343974]
私たちは、常識と一時的な知識のヒントの両方を階層的にカバーする動機があります。
具体的には,文の背骨成分を抽出し,知識単位の一般的な定式化を提案する。
次に、事実単位の上にスーパーグラフを構築し、文レベル(事実群間の関係)と実体レベルの相互作用の利点を享受する。
論文 参考訳(メタデータ) (2021-05-21T13:11:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。