Stark many-body localization on a superconducting quantum processor
- URL: http://arxiv.org/abs/2011.13895v1
- Date: Fri, 27 Nov 2020 18:37:01 GMT
- Title: Stark many-body localization on a superconducting quantum processor
- Authors: Qiujiang Guo, Chen Cheng, Hekang Li, Shibo Xu, Pengfei Zhang, Zhen
Wang, Chao Song, Wuxin Liu, Wenhui Ren, Hang Dong, Rubem Mondaini, and H.
Wang
- Abstract summary: We build a quantum device composed of thirty-two superconducting qubits, faithfully reproducing the relaxation dynamics of a non-integrable spin model.
Our results describe the real-time evolution at sizes that surpass what is currently attainable by exact simulations in classical computers.
- Score: 10.67740744008533
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum emulators, owing to their large degree of tunability and control,
allow the observation of fine aspects of closed quantum many-body systems, as
either the regime where thermalization takes place or when it is halted by the
presence of disorder. The latter, dubbed many-body localization (MBL)
phenomenon, describes the non-ergodic behavior that is dynamically identified
by the preservation of local information and slow entanglement growth. Here, we
provide a precise observation of this same phenomenology in the case the onsite
energy landscape is not disordered, but rather linearly varied, emulating the
Stark MBL. To this end, we construct a quantum device composed of thirty-two
superconducting qubits, faithfully reproducing the relaxation dynamics of a
non-integrable spin model. Our results describe the real-time evolution at
sizes that surpass what is currently attainable by exact simulations in
classical computers, signaling the onset of quantum advantage, thus bridging
the way for quantum computation as a resource for solving out-of-equilibrium
many-body problems.
Related papers
- Observation of disorder-free localization and efficient disorder averaging on a quantum processor [117.33878347943316]
We implement an efficient procedure on a quantum processor, leveraging quantum parallelism, to efficiently sample over all disorder realizations.
We observe localization without disorder in quantum many-body dynamics in one and two dimensions.
arXiv Detail & Related papers (2024-10-09T05:28:14Z) - Entanglement with neutral atoms in the simulation of nonequilibrium dynamics of one-dimensional spin models [0.0]
We study the generation and role of entanglement in the dynamics of spin-1/2 models.
We introduce the neutral atom Molmer-Sorensen gate, involving rapid adiabatic Rydberg dressing interleaved in a spin-echo sequence.
In quantum simulation, we consider critical behavior in quench dynamics of transverse field Ising models.
arXiv Detail & Related papers (2024-06-07T23:29:16Z) - Simulation of open quantum systems on universal quantum computers [15.876768787615179]
We present an innovative and scalable method to simulate open quantum systems using quantum computers.
We define an adjoint density matrix as a counterpart of the true density matrix, which reduces to a mixed-unitary quantum channel.
accurate long-time simulation can also be achieved as the adjoint density matrix and the true dissipated one converges to the same state.
arXiv Detail & Related papers (2024-05-31T09:07:27Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Computational supremacy in quantum simulation [22.596358764113624]
We show that superconducting quantum annealing processors can generate samples in close agreement with solutions of the Schr"odinger equation.
We conclude that no known approach can achieve the same accuracy as the quantum annealer within a reasonable timeframe.
arXiv Detail & Related papers (2024-03-01T19:00:04Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Verifying quantum information scrambling dynamics in a fully
controllable superconducting quantum simulator [0.0]
We study the verified scrambling in a 1D spin chain by an analogue superconducting quantum simulator with the signs and values of individual driving and coupling terms fully controllable.
Our work demonstrates the superconducting system as a powerful quantum simulator.
arXiv Detail & Related papers (2021-12-21T13:41:47Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z) - Quantum time crystals with programmable disorder in higher dimensions [0.0]
We present fresh evidence for the presence of discrete quantum time crystals in two spatial dimensions.
They are intricate quantum systems that break discrete time translation symmetry in driven quantum many-body systems undergoing non-equilibrium dynamics.
arXiv Detail & Related papers (2020-04-15T18:02:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.