Stability of quantum eigenstates and kinetics of wave function collapse
in a fluctuating environment
- URL: http://arxiv.org/abs/2011.13997v1
- Date: Wed, 25 Nov 2020 10:41:53 GMT
- Title: Stability of quantum eigenstates and kinetics of wave function collapse
in a fluctuating environment
- Authors: Simone Chiarelli and Piero Chiarelli
- Abstract summary: The work analyzes the stability of the quantum eigenstates when they are submitted to fluctuations.
In the limit of sufficiently slow kinetics, the quantum eigenstates show to remain stationary configurations.
The work shows that the final stationary eigenstate depends by the initial configuration of the superposition of states.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The work analyzes the stability of the quantum eigenstates when they are
submitted to fluctuations by using the stochastic generalization of the
Madelung quantum hydrodynamic approach. In the limit of sufficiently slow
kinetics, the quantum eigenstates show to remain stationary configurations with
a very small perturbation of their mass density distribution. The work shows
that the stochastic quantum hydrodynamic model allows to obtain the definition
of the quantum eigenstates without recurring to the measurement process or any
reference to the classical mechanics, by identifying them from their intrinsic
properties of stationarity and stability. By using the discrete approach, the
path integral solution of the stochastic quantum-hydrodynamic equation has been
derived in order to investigate how the final stationary configurations depend
by the the initial condition of the quatum superposition of states. The
stochastic quantum hydrodynamics shows that the superposition of states can
relax to different stationary states that, in the small noise limit, are the
slightly perturbed quantum eigenstates. The work shows that the final
stationary eigenstate depends by the initial configuration of the superposition
of states and that possibly the probability transition to each eigenstates can
satisfy the Born rule, allowing the decoherence process to be compatible with
the Copenhagen interpretation of quantum mechanics.
Related papers
- Quantum correlations in the steady state of light-emitter ensembles from
perturbation theory [0.0]
In systems of light emitters subject to single-emitter or two-emitter driving, the steady state perturbed away from the U(1) limit exhibits spin squeezing.
Our main result is that in systems of light emitters subject to single-emitter or two-emitter driving, the steady state perturbed away from the U(1) limit generically exhibits spin squeezing.
arXiv Detail & Related papers (2024-02-26T18:50:30Z) - Non-Quantum Behaviors of Configuration-Space Density Formulations of
quantum mechanics [2.746804206319065]
We find that the degree of non-quantumness' of a state, suitably defined, changes with time.
We argue that a dynamical justification of the Wallstrom condition is unlikely to be successful.
We also make certain observations about stationary states in CSD frameworks.
arXiv Detail & Related papers (2023-03-09T00:30:11Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Quantum behavior of a superconducting Duffing oscillator at the
dissipative phase transition [0.817918559522319]
We reconcile the classical and quantum descriptions in a unified picture of quantum metastability.
By engineering the lifetime of the metastable states sufficiently large, we observe a first-order dissipative phase transition.
Results reveal a smooth quantum evolution behind a sudden dissipative transition.
arXiv Detail & Related papers (2022-06-13T17:35:27Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Exact bistability and time pseudo-crystallization of driven-dissipative
fermionic lattices [0.0]
We prove bistability in precisely the quantum fluctuations.
Surprisingly, rather than destroying bistability, the quantum fluctuations themselves exhibit bistability.
Our work provides to the best of our knowledge the first example of a provably bistable quantum optical system.
arXiv Detail & Related papers (2022-02-18T19:00:00Z) - Strongly interacting trapped one-dimensional quantum gases: an exact
solution [0.0]
Review collects the predictions coming from a family of exact solutions.
The exact solution applies to bosons, fermions and mixtures.
It also predicts the exact quantum dynamics at all the times.
arXiv Detail & Related papers (2022-01-07T08:06:43Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - Quantum Zeno effect appears in stages [64.41511459132334]
In the quantum Zeno effect, quantum measurements can block the coherent oscillation of a two level system by freezing its state to one of the measurement eigenstates.
We show that the onset of the Zeno regime is marked by a $textitcascade of transitions$ in the system dynamics as the measurement strength is increased.
arXiv Detail & Related papers (2020-03-23T18:17:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.