論文の概要: Feedback Effects in Repeat-Use Criminal Risk Assessments
- arxiv url: http://arxiv.org/abs/2011.14075v1
- Date: Sat, 28 Nov 2020 06:40:05 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-19 20:03:38.841535
- Title: Feedback Effects in Repeat-Use Criminal Risk Assessments
- Title(参考訳): 繰り返し犯罪リスク評価におけるフィードバック効果
- Authors: Benjamin Laufer
- Abstract要約: リスクは、単発テストで捉えられていない方法で、シーケンシャルな決定を伝達できることを示します。
リスクアセスメントツールは、非常に複雑でパスに依存したプロセスで動作し、歴史的な不平等が引き起こされる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the criminal legal context, risk assessment algorithms are touted as
data-driven, well-tested tools. Studies known as validation tests are typically
cited by practitioners to show that a particular risk assessment algorithm has
predictive accuracy, establishes legitimate differences between risk groups,
and maintains some measure of group fairness in treatment. To establish these
important goals, most tests use a one-shot, single-point measurement. Using a
Polya Urn model, we explore the implication of feedback effects in sequential
scoring-decision processes. We show through simulation that risk can propagate
over sequential decisions in ways that are not captured by one-shot tests. For
example, even a very small or undetectable level of bias in risk allocation can
amplify over sequential risk-based decisions, leading to observable group
differences after a number of decision iterations. Risk assessment tools
operate in a highly complex and path-dependent process, fraught with historical
inequity. We conclude from this study that these tools do not properly account
for compounding effects, and require new approaches to development and
auditing.
- Abstract(参考訳): 刑事訴訟の文脈では、リスクアセスメントアルゴリズムはデータ駆動型、よくテストされたツールと見なされる。
検証テストとして知られる研究は、一般的に、特定のリスク評価アルゴリズムが予測精度を持ち、リスクグループ間の正当な違いを確立し、治療における集団公平さの尺度を維持していることを示すために、実践者によって引用される。
これらの重要な目標を達成するために、ほとんどのテストはワンショットのシングルポイント計測を使用する。
polya urnモデルを用いて,逐次スコア決定過程におけるフィードバック効果の含意について検討する。
シミュレーションを通じて、リスクは単発テストで捉えられない方法でシーケンシャルな決定を伝達できることを示します。
例えば、リスク割り当ての非常に小さい、あるいは検出不能なレベルのバイアスでさえ、逐次的なリスクベースの決定を増幅し、いくつかの決定イテレーションの後にグループの差異を観測できる。
リスク評価ツールは、非常に複雑で経路に依存したプロセスで動作します。
本研究は,これらのツールが複合効果を適切に考慮していないこと,開発と監査に新たなアプローチが必要であることを結論づける。
関連論文リスト
- Data-driven decision-making under uncertainty with entropic risk measure [5.407319151576265]
エントロピーリスク尺度は、不確実な損失に関連する尾のリスクを考慮に入れた高い意思決定に広く用いられている。
経験的エントロピーリスク推定器を劣化させるため, 強く一貫したブートストラップ手法を提案する。
検証性能のバイアスが補正されない場合,クロスバリデーション手法は,保険業者のアウト・オブ・サンプルリスクを著しく高める可能性があることを示す。
論文 参考訳(メタデータ) (2024-09-30T04:02:52Z) - Controlling Risk of Retrieval-augmented Generation: A Counterfactual Prompting Framework [77.45983464131977]
我々は、RAGモデルの予測が誤りであり、現実のアプリケーションにおいて制御不能なリスクをもたらす可能性がどの程度あるかに焦点を当てる。
本研究は,RAGの予測に影響を及ぼす2つの重要な潜伏要因を明らかにする。
我々は,これらの要因をモデルに誘導し,その応答に与える影響を解析する,反実的プロンプトフレームワークを開発した。
論文 参考訳(メタデータ) (2024-09-24T14:52:14Z) - Data-Adaptive Tradeoffs among Multiple Risks in Distribution-Free Prediction [55.77015419028725]
しきい値とトレードオフパラメータが適応的に選択された場合、リスクの有効な制御を可能にする手法を開発する。
提案手法は単調なリスクとほぼ単調なリスクをサポートするが,それ以外は分布的な仮定はしない。
論文 参考訳(メタデータ) (2024-03-28T17:28:06Z) - On (assessing) the fairness of risk score models [2.0646127669654826]
リスクモデルは、ユーザに対して潜在的な結果について不確実性を伝えるという事実など、さまざまな理由から関心を集めている。
リスクスコアフェアネスの鍵となるデシダータムとして,異なるグループに類似した価値を提供する。
本稿では,従来提案されていた基準値よりも試料径バイアスが少ない新しい校正誤差指標を提案する。
論文 参考訳(メタデータ) (2023-02-17T12:45:51Z) - Improved Policy Evaluation for Randomized Trials of Algorithmic Resource
Allocation [54.72195809248172]
提案する新しい概念を応用した新しい推定器を提案する。
我々は,このような推定器が,サンプル手段に基づく一般的な推定器よりも精度が高いことを理論的に証明した。
論文 参考訳(メタデータ) (2023-02-06T05:17:22Z) - Risk-aware linear bandits with convex loss [0.0]
提案手法は, 線形帯域幅の一般化に類似した, 最適リスク認識動作を学習するための楽観的 UCB アルゴリズムを提案する。
このアプローチではアルゴリズムの各ラウンドで凸問題を解く必要があり、オンライン勾配降下法によって得られる近似解のみを許すことで緩和することができる。
論文 参考訳(メタデータ) (2022-09-15T09:09:53Z) - Mitigating multiple descents: A model-agnostic framework for risk
monotonization [84.6382406922369]
クロスバリデーションに基づくリスクモノトナイズのための一般的なフレームワークを開発する。
本稿では,データ駆動方式であるゼロステップとワンステップの2つの手法を提案する。
論文 参考訳(メタデータ) (2022-05-25T17:41:40Z) - A Survey of Risk-Aware Multi-Armed Bandits [84.67376599822569]
我々は、様々な利害リスク対策をレビューし、その特性についてコメントする。
我々は,探索と探索のトレードオフが現れる,後悔の最小化設定のためのアルゴリズムを検討する。
今後の研究の課題と肥大化についてコメントし、締めくくりに締めくくります。
論文 参考訳(メタデータ) (2022-05-12T02:20:34Z) - Two steps to risk sensitivity [4.974890682815778]
条件付きバリュー・アット・リスク(CVaR)は、人間と動物の計画のモデル化のためのリスク尺度である。
CVaRに対する従来の分布的アプローチを逐次的に導入し、人間の意思決定者の選択を再分析する。
次に,リスク感度,すなわち時間的整合性,さらに重要な特性について考察し,CVaRの代替案を示す。
論文 参考訳(メタデータ) (2021-11-12T16:27:47Z) - Uncertainty-aware Score Distribution Learning for Action Quality
Assessment [91.05846506274881]
行動品質評価(AQA)のための不確実性認識スコア分布学習(USDL)手法を提案する。
具体的には、異なる評価スコアの確率を記述したスコア分布に関連する事例として、アクションを考察する。
微粒なスコアラベルが利用できる状況下では、多パス不確実性を考慮したスコア分布学習法(MUSDL)を考案し、スコアの不整合成分を探索する。
論文 参考訳(メタデータ) (2020-06-13T15:41:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。