Deep Learning for Regularization Prediction in Diffeomorphic Image
Registration
- URL: http://arxiv.org/abs/2011.14229v3
- Date: Fri, 4 Feb 2022 21:42:56 GMT
- Title: Deep Learning for Regularization Prediction in Diffeomorphic Image
Registration
- Authors: Jian Wang, Miaomiao Zhang
- Abstract summary: We introduce a novel framework that automatically determines the parameters controlling the smoothness of diffeomorphic transformations.
We develop a predictive model based on deep convolutional neural networks (CNN) that learns the mapping between pairwise images and the regularization parameter of image registration.
Experimental results show that our model not only predicts appropriate regularization parameters for image registration, but also improving the network training in terms of time and memory efficiency.
- Score: 8.781861951759948
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a predictive model for estimating regularization
parameters of diffeomorphic image registration. We introduce a novel framework
that automatically determines the parameters controlling the smoothness of
diffeomorphic transformations. Our method significantly reduces the effort of
parameter tuning, which is time and labor-consuming. To achieve the goal, we
develop a predictive model based on deep convolutional neural networks (CNN)
that learns the mapping between pairwise images and the regularization
parameter of image registration. In contrast to previous methods that estimate
such parameters in a high-dimensional image space, our model is built in an
efficient bandlimited space with much lower dimensions. We demonstrate the
effectiveness of our model on both 2D synthetic data and 3D real brain images.
Experimental results show that our model not only predicts appropriate
regularization parameters for image registration, but also improving the
network training in terms of time and memory efficiency.
Related papers
- Calibrated Cache Model for Few-Shot Vision-Language Model Adaptation [36.45488536471859]
Similarity refines the image-image similarity by using unlabeled images.
Weight introduces a precision matrix into the weight function to adequately model the relation between training samples.
To reduce the high complexity of GPs, we propose a group-based learning strategy.
arXiv Detail & Related papers (2024-10-11T15:12:30Z) - $\texttt{NePhi}$: Neural Deformation Fields for Approximately Diffeomorphic Medical Image Registration [16.388101540950295]
NePhi represents deformations functionally, leading to great flexibility within the design space of memory consumption.
We show that NePhi can match the accuracy of voxel-based representations in a single-resolution registration setting.
For multi-resolution registration, our method matches the accuracy of current SOTA learning-based registration approaches with instance optimization.
arXiv Detail & Related papers (2023-09-13T21:21:50Z) - Automatic Parameterization for Aerodynamic Shape Optimization via Deep
Geometric Learning [60.69217130006758]
We propose two deep learning models that fully automate shape parameterization for aerodynamic shape optimization.
Both models are optimized to parameterize via deep geometric learning to embed human prior knowledge into learned geometric patterns.
We perform shape optimization experiments on 2D airfoils and discuss the applicable scenarios for the two models.
arXiv Detail & Related papers (2023-05-03T13:45:40Z) - Medical Image Registration via Neural Fields [35.80302878742334]
We present a new neural net based image registration framework, called NIR (Neural Image Registration), which is based on optimization but utilizes deep neural nets to model deformations between image pairs.
Experiments on two 3D MR brain scan datasets demonstrate that NIR yields state-of-the-art performance in terms of both registration accuracy and regularity, while running significantly faster than traditional optimization-based methods.
arXiv Detail & Related papers (2022-06-07T08:43:31Z) - Adversarial Parametric Pose Prior [106.12437086990853]
We learn a prior that restricts the SMPL parameters to values that produce realistic poses via adversarial training.
We show that our learned prior covers the diversity of the real-data distribution, facilitates optimization for 3D reconstruction from 2D keypoints, and yields better pose estimates when used for regression from images.
arXiv Detail & Related papers (2021-12-08T10:05:32Z) - Scene Synthesis via Uncertainty-Driven Attribute Synchronization [52.31834816911887]
This paper introduces a novel neural scene synthesis approach that can capture diverse feature patterns of 3D scenes.
Our method combines the strength of both neural network-based and conventional scene synthesis approaches.
arXiv Detail & Related papers (2021-08-30T19:45:07Z) - Deformable Image Registration using Neural ODEs [15.245085400790002]
We present a generic, fast, and accurate diffeomorphic image registration framework that leverages neural ordinary differential equations (NODEs)
Compared with traditional optimization-based methods, our framework reduces the running time from tens of minutes to tens of seconds.
Our experiments show that the registration results of our method outperform state-of-the-arts under various metrics.
arXiv Detail & Related papers (2021-08-07T12:54:17Z) - STAR: Sparse Transformer-based Action Recognition [61.490243467748314]
This work proposes a novel skeleton-based human action recognition model with sparse attention on the spatial dimension and segmented linear attention on the temporal dimension of data.
Experiments show that our model can achieve comparable performance while utilizing much less trainable parameters and achieve high speed in training and inference.
arXiv Detail & Related papers (2021-07-15T02:53:11Z) - Conditional Deformable Image Registration with Convolutional Neural
Network [15.83842747998493]
We propose a conditional image registration method and a new self-supervised learning paradigm for deep deformable image registration.
Our proposed method enables the precise control of the smoothness of the deformation field without sacrificing the runtime advantage or registration accuracy.
arXiv Detail & Related papers (2021-06-23T22:25:28Z) - PaMIR: Parametric Model-Conditioned Implicit Representation for
Image-based Human Reconstruction [67.08350202974434]
We propose Parametric Model-Conditioned Implicit Representation (PaMIR), which combines the parametric body model with the free-form deep implicit function.
We show that our method achieves state-of-the-art performance for image-based 3D human reconstruction in the cases of challenging poses and clothing types.
arXiv Detail & Related papers (2020-07-08T02:26:19Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
We develop a new deep learning based framework to optimize a diffeomorphic model via multi-scale propagation.
We conduct two groups of image registration experiments on 3D volume datasets including image-to-atlas registration on brain MRI data and image-to-image registration on liver CT data.
arXiv Detail & Related papers (2020-04-30T03:23:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.