Calibrated Cache Model for Few-Shot Vision-Language Model Adaptation
- URL: http://arxiv.org/abs/2410.08895v1
- Date: Fri, 11 Oct 2024 15:12:30 GMT
- Title: Calibrated Cache Model for Few-Shot Vision-Language Model Adaptation
- Authors: Kun Ding, Qiang Yu, Haojian Zhang, Gaofeng Meng, Shiming Xiang,
- Abstract summary: Similarity refines the image-image similarity by using unlabeled images.
Weight introduces a precision matrix into the weight function to adequately model the relation between training samples.
To reduce the high complexity of GPs, we propose a group-based learning strategy.
- Score: 36.45488536471859
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cache-based approaches stand out as both effective and efficient for adapting vision-language models (VLMs). Nonetheless, the existing cache model overlooks three crucial aspects. 1) Pre-trained VLMs are mainly optimized for image-text similarity, neglecting the importance of image-image similarity, leading to a gap between pre-training and adaptation. 2) The current cache model is based on the Nadaraya-Watson (N-W) estimator, which disregards the intricate relationships among training samples while constructing weight function. 3) Under the condition of limited samples, the logits generated by cache model are of high uncertainty, directly using these logits without accounting for the confidence could be problematic. This work presents three calibration modules aimed at addressing the above challenges. Similarity Calibration refines the image-image similarity by using unlabeled images. We add a learnable projection layer with residual connection on top of the pre-trained image encoder of CLIP and optimize the parameters by minimizing self-supervised contrastive loss. Weight Calibration introduces a precision matrix into the weight function to adequately model the relation between training samples, transforming the existing cache model to a Gaussian Process (GP) regressor, which could be more accurate than N-W estimator. Confidence Calibration leverages the predictive variances computed by GP Regression to dynamically re-scale the logits of cache model, ensuring that the cache model's outputs are appropriately adjusted based on their confidence levels. Besides, to reduce the high complexity of GPs, we further propose a group-based learning strategy. Integrating the above designs, we propose both training-free and training-required variants. Extensive experiments on 11 few-shot classification datasets validate that the proposed methods can achieve state-of-the-art performance.
Related papers
- Fast constrained sampling in pre-trained diffusion models [77.21486516041391]
Diffusion models have dominated the field of large, generative image models.
We propose an algorithm for fast-constrained sampling in large pre-trained diffusion models.
arXiv Detail & Related papers (2024-10-24T14:52:38Z) - MetaAug: Meta-Data Augmentation for Post-Training Quantization [32.02377559968568]
Post-Training Quantization (PTQ) has received significant attention because it requires only a small set of calibration data to quantize a full-precision model.
We propose a novel meta-learning based approach to enhance the performance of post-training quantization.
arXiv Detail & Related papers (2024-07-20T02:18:51Z) - Forgery-aware Adaptive Transformer for Generalizable Synthetic Image
Detection [106.39544368711427]
We study the problem of generalizable synthetic image detection, aiming to detect forgery images from diverse generative methods.
We present a novel forgery-aware adaptive transformer approach, namely FatFormer.
Our approach tuned on 4-class ProGAN data attains an average of 98% accuracy to unseen GANs, and surprisingly generalizes to unseen diffusion models with 95% accuracy.
arXiv Detail & Related papers (2023-12-27T17:36:32Z) - Uncertainty Guided Adaptive Warping for Robust and Efficient Stereo
Matching [77.133400999703]
Correlation based stereo matching has achieved outstanding performance.
Current methods with a fixed model do not work uniformly well across various datasets.
This paper proposes a new perspective to dynamically calculate correlation for robust stereo matching.
arXiv Detail & Related papers (2023-07-26T09:47:37Z) - Distribution-Aware Single-Stage Models for Multi-Person 3D Pose
Estimation [29.430404703883084]
We present a novel Distribution-Aware Single-stage (DAS) model for tackling the challenging multi-person 3D pose estimation problem.
The proposed DAS model simultaneously localizes person positions and their corresponding body joints in the 3D camera space in a one-pass manner.
Comprehensive experiments on benchmarks CMU Panoptic and MuPoTS-3D demonstrate the superior efficiency of the proposed DAS model.
arXiv Detail & Related papers (2022-03-15T07:30:27Z) - Model soups: averaging weights of multiple fine-tuned models improves
accuracy without increasing inference time [69.7693300927423]
We show that averaging the weights of multiple models fine-tuned with different hyper parameter configurations improves accuracy and robustness.
We show that the model soup approach extends to multiple image classification and natural language processing tasks.
arXiv Detail & Related papers (2022-03-10T17:03:49Z) - A Model for Multi-View Residual Covariances based on Perspective
Deformation [88.21738020902411]
We derive a model for the covariance of the visual residuals in multi-view SfM, odometry and SLAM setups.
We validate our model with synthetic and real data and integrate it into photometric and feature-based Bundle Adjustment.
arXiv Detail & Related papers (2022-02-01T21:21:56Z) - PDC-Net+: Enhanced Probabilistic Dense Correspondence Network [161.76275845530964]
Enhanced Probabilistic Dense Correspondence Network, PDC-Net+, capable of estimating accurate dense correspondences.
We develop an architecture and an enhanced training strategy tailored for robust and generalizable uncertainty prediction.
Our approach obtains state-of-the-art results on multiple challenging geometric matching and optical flow datasets.
arXiv Detail & Related papers (2021-09-28T17:56:41Z) - Deep Learning for Regularization Prediction in Diffeomorphic Image
Registration [8.781861951759948]
We introduce a novel framework that automatically determines the parameters controlling the smoothness of diffeomorphic transformations.
We develop a predictive model based on deep convolutional neural networks (CNN) that learns the mapping between pairwise images and the regularization parameter of image registration.
Experimental results show that our model not only predicts appropriate regularization parameters for image registration, but also improving the network training in terms of time and memory efficiency.
arXiv Detail & Related papers (2020-11-28T22:56:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.