Artificial Intelligence applied to chest X-Ray images for the automatic
detection of COVID-19. A thoughtful evaluation approach
- URL: http://arxiv.org/abs/2011.14259v1
- Date: Sun, 29 Nov 2020 02:48:39 GMT
- Title: Artificial Intelligence applied to chest X-Ray images for the automatic
detection of COVID-19. A thoughtful evaluation approach
- Authors: Julian D. Arias-Londo\~no, Jorge A. Gomez-Garcia, Laureano
Moro-Velazquez, Juan I. Godino-Llorente
- Abstract summary: The paper describes the process followed to train a Convolutional Neural Network with a dataset of more than 79,500 X-Ray images.
With the employed methodology, a 91.5% classification accuracy is obtained, with a 87.4% average recall for the worst but most explainable experiment.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Current standard protocols used in the clinic for diagnosing COVID-19 include
molecular or antigen tests, generally complemented by a plain chest X-Ray. The
combined analysis aims to reduce the significant number of false negatives of
these tests, but also to provide complementary evidence about the presence and
severity of the disease. However, the procedure is not free of errors, and the
interpretation of the chest X-Ray is only restricted to radiologists due to its
complexity. With the long term goal to provide new evidence for the diagnosis,
this paper presents an evaluation of different methods based on a deep neural
network. These are the first steps to develop an automatic COVID-19 diagnosis
tool using chest X-Ray images, that would additionally differentiate between
controls, pneumonia or COVID-19 groups. The paper describes the process
followed to train a Convolutional Neural Network with a dataset of more than
79,500 X-Ray images compiled from different sources, including more than 8,500
COVID-19 examples. For the sake of evaluation and comparison of the models
developed, three different experiments were carried out following three
preprocessing schemes. The aim is to evaluate how preprocessing the data
affects the results and improves its explainability. Likewise, a critical
analysis is carried out about different variability issues that might
compromise the system and the effects on the performance. With the employed
methodology, a 91.5% classification accuracy is obtained, with a 87.4% average
recall for the worst but most explainable experiment, which requires a previous
automatic segmentation of the lungs region.
Related papers
- Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
Co-deletion of the 1p/19q gene is associated with clinical outcomes in low-grade gliomas.
This study aims to utilize a specially MRI-based convolutional neural network for brain cancer detection.
arXiv Detail & Related papers (2024-09-29T07:04:26Z) - Robust and Interpretable COVID-19 Diagnosis on Chest X-ray Images using
Adversarial Training [0.8287206589886881]
We train 21 convolutional neural network (CNN) models on a diverse set of 33,000+ chest X-ray (CXR) images to classify between healthy, COVID-19, and non-COVID-19 pneumonia CXRs.
Our resulting models achieved a 3-way classification accuracy, recall, and precision of up to 97.03%, 97.97%, and 99.95%, respectively.
arXiv Detail & Related papers (2023-11-23T23:40:01Z) - CIRCA: comprehensible online system in support of chest X-rays-based
COVID-19 diagnosis [37.41181188499616]
Deep learning techniques can help in the faster detection of COVID-19 cases and monitoring of disease progression.
Five different datasets were used to construct a representative dataset of 23 799 CXRs for model training.
A U-Net-based model was developed to identify a clinically relevant region of the CXR.
arXiv Detail & Related papers (2022-10-11T13:30:34Z) - Optimising Chest X-Rays for Image Analysis by Identifying and Removing
Confounding Factors [49.005337470305584]
During the COVID-19 pandemic, the sheer volume of imaging performed in an emergency setting for COVID-19 diagnosis has resulted in a wide variability of clinical CXR acquisitions.
The variable quality of clinically-acquired CXRs within publicly available datasets could have a profound effect on algorithm performance.
We propose a simple and effective step-wise approach to pre-processing a COVID-19 chest X-ray dataset to remove undesired biases.
arXiv Detail & Related papers (2022-08-22T13:57:04Z) - A Novel Implementation of Machine Learning for the Efficient,
Explainable Diagnosis of COVID-19 from Chest CT [0.0]
The aim of this study was to take a novel approach in the machine learning-based detection of COVID-19 from chest CT scans.
The proposed model attained an overall accuracy of 0.927 and a sensitivity of 0.958.
arXiv Detail & Related papers (2022-06-15T18:35:22Z) - Automated SSIM Regression for Detection and Quantification of Motion
Artefacts in Brain MR Images [54.739076152240024]
Motion artefacts in magnetic resonance brain images are a crucial issue.
The assessment of MR image quality is fundamental before proceeding with the clinical diagnosis.
An automated image quality assessment based on the structural similarity index (SSIM) regression has been proposed here.
arXiv Detail & Related papers (2022-06-14T10:16:54Z) - PDCOVIDNet: A Parallel-Dilated Convolutional Neural Network Architecture
for Detecting COVID-19 from Chest X-Ray Images [1.4824891788575418]
COVID-19 pandemic continues to severely undermine the prosperity of the global health system.
The use of chest X-ray images for radiological assessment is one of the essential screening techniques.
We propose a parallel-dilated convolutional neural network based COVID-19 detection system from chest x-ray images.
arXiv Detail & Related papers (2020-07-29T12:28:16Z) - Integrative Analysis for COVID-19 Patient Outcome Prediction [53.11258640541513]
We combine radiomics of lung opacities and non-imaging features from demographic data, vital signs, and laboratory findings to predict need for intensive care unit admission.
Our methods may also be applied to other lung diseases including but not limited to community acquired pneumonia.
arXiv Detail & Related papers (2020-07-20T19:08:50Z) - Predicting COVID-19 Pneumonia Severity on Chest X-ray with Deep Learning [57.00601760750389]
We present a severity score prediction model for COVID-19 pneumonia for frontal chest X-ray images.
Such a tool can gauge severity of COVID-19 lung infections that can be used for escalation or de-escalation of care.
arXiv Detail & Related papers (2020-05-24T23:13:16Z) - JCS: An Explainable COVID-19 Diagnosis System by Joint Classification
and Segmentation [95.57532063232198]
coronavirus disease 2019 (COVID-19) has caused a pandemic disease in over 200 countries.
To control the infection, identifying and separating the infected people is the most crucial step.
This paper develops a novel Joint Classification and (JCS) system to perform real-time and explainable COVID-19 chest CT diagnosis.
arXiv Detail & Related papers (2020-04-15T12:30:40Z) - Towards an Effective and Efficient Deep Learning Model for COVID-19
Patterns Detection in X-ray Images [2.21653002719733]
The main goal of this work is to propose an accurate yet efficient method for the problem of COVID-19 screening in chest X-rays.
A dataset of 13,569 X-ray images divided into healthy, non-COVID-19 pneumonia, and COVID-19 patients is used to train the proposed approaches.
Results: The proposed approach was able to produce a high-quality model, with an overall accuracy of 93.9%, COVID-19, sensitivity of 96.8% and positive prediction of 100%.
arXiv Detail & Related papers (2020-04-12T23:26:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.