論文の概要: An Algorithm for Fast Supervised Learning in Variational Circuits
through Simultaneous Processing of Multiple Samples
- arxiv url: http://arxiv.org/abs/2011.14297v1
- Date: Sun, 29 Nov 2020 06:14:41 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-22 16:40:54.390632
- Title: An Algorithm for Fast Supervised Learning in Variational Circuits
through Simultaneous Processing of Multiple Samples
- Title(参考訳): 複数のサンプルの同時処理による変分回路における高速教師付き学習アルゴリズム
- Authors: Siddharth Dangwal, Ritvik Sharma, Debanjan Bhowmik
- Abstract要約: 本稿では,複数のサンプルを並列に処理することで,変分分類器の高速な訓練を行うアルゴリズムを提案する。
提案アルゴリズムは、前方通過におけるqRAMや他の量子回路を利用する。
論文では二分分類のみについて論じるが、アルゴリズムは容易に多クラス分類に一般化できる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a novel algorithm for fast training of variational classifiers by
processing multiple samples parallelly. The algorithm can be adapted for any
ansatz used in the variational circuit. The presented algorithm utilizes qRAM
and other quantum circuits in the forward pass. Further, instead of the usual
practice of computing the loss classically, we calculate the loss using a
Swap-test circuit. The algorithm thus brings down the training cost of a
variational classifier to O(logN)from the usual O(N)when training on a dataset
of N samples. Although we discuss only binary classification in the paper, the
algorithm can be easily generalized to multi-class classification.
- Abstract(参考訳): 本稿では,複数のサンプルを並列に処理し,変分分類器の高速学習のための新しいアルゴリズムを提案する。
このアルゴリズムは変分回路で使用される任意のアンザッツに適応することができる。
提案アルゴリズムは、前方通過におけるqRAMや他の量子回路を利用する。
さらに,損失を古典的に計算する通常の手法ではなく,スワップテスト回路を用いて損失を計算する。
このアルゴリズムは、Nサンプルのデータセット上での通常のO(N)whenトレーニングから、変分分類器のトレーニングコストをO(logN)に下げる。
論文では二分分類のみについて論じるが、アルゴリズムは容易に多クラス分類に一般化できる。
関連論文リスト
- Gaussian Elimination versus Greedy Methods for the Synthesis of Linear
Reversible Circuits [0.0]
可逆回路は、量子コンピューティングに多くの応用がある可逆回路のサブクラスを表す。
ガウス除去アルゴリズムの最適化版と調整LU分解を用いて,任意の線形可逆作用素に対する新しいアルゴリズムを提案する。
全体として、我々のアルゴリズムは特定の問題サイズに対する最先端の手法を改善している。
論文 参考訳(メタデータ) (2022-01-17T16:31:42Z) - Machine Learning for Online Algorithm Selection under Censored Feedback [71.6879432974126]
オンラインアルゴリズム選択(OAS)では、アルゴリズム問題クラスのインスタンスがエージェントに次々に提示され、エージェントは、固定された候補アルゴリズムセットから、おそらく最高のアルゴリズムを迅速に選択する必要がある。
SAT(Satisfiability)のような決定問題に対して、品質は一般的にアルゴリズムのランタイムを指す。
本研究では,OASのマルチアームバンディットアルゴリズムを再検討し,この問題に対処する能力について議論する。
ランタイム指向の損失に適応し、時間的地平線に依存しない空間的・時間的複雑さを維持しながら、部分的に検閲されたデータを可能にする。
論文 参考訳(メタデータ) (2021-09-13T18:10:52Z) - Quantum Algorithms for Prediction Based on Ridge Regression [0.7612218105739107]
本稿では,リッジ回帰モデルに基づく量子アルゴリズムを提案する。
提案アルゴリズムは幅広い応用範囲を持ち,提案アルゴリズムは他の量子アルゴリズムのサブルーチンとして利用することができる。
論文 参考訳(メタデータ) (2021-04-27T11:03:52Z) - Evolving Reinforcement Learning Algorithms [186.62294652057062]
メタラーニング強化学習アルゴリズムの手法を提案する。
学習アルゴリズムはドメインに依存しないため、トレーニング中に見えない新しい環境に一般化することができる。
従来の制御タスク、gridworld型タスク、atariゲームよりも優れた一般化性能を得る2つの学習アルゴリズムに注目した。
論文 参考訳(メタデータ) (2021-01-08T18:55:07Z) - Qubit-efficient entanglement spectroscopy using qubit resets [0.0]
NISQデバイス上でのエンタングルメント分光のための量子ビット効率の量子アルゴリズムを開発した。
我々のアルゴリズムは、ノイズの存在下で同様の性能を保ちながら、従来のどの効率的なアルゴリズムよりも少ない量子ビットを使用する。
また、量子ビットリセット回路に適した標準回路深さの一般化として、有効回路深さの概念を導入する。
論文 参考訳(メタデータ) (2020-10-06T23:22:57Z) - Activation Relaxation: A Local Dynamical Approximation to
Backpropagation in the Brain [62.997667081978825]
活性化緩和(AR)は、バックプロパゲーション勾配を力学系の平衡点として構成することで動機付けられる。
我々のアルゴリズムは、正しいバックプロパゲーション勾配に迅速かつ堅牢に収束し、単一のタイプの計算単位しか必要とせず、任意の計算グラフで操作できる。
論文 参考訳(メタデータ) (2020-09-11T11:56:34Z) - Accelerated Message Passing for Entropy-Regularized MAP Inference [89.15658822319928]
離散値のランダムフィールドにおけるMAP推論の最大化は、機械学習の基本的な問題である。
この問題の難しさから、特殊メッセージパッシングアルゴリズムの導出には線形プログラミング(LP)緩和が一般的である。
古典的加速勾配の根底にある手法を活用することにより,これらのアルゴリズムを高速化するランダム化手法を提案する。
論文 参考訳(メタデータ) (2020-07-01T18:43:32Z) - Nearly Linear Row Sampling Algorithm for Quantile Regression [54.75919082407094]
データの次元にほぼ線形なサンプル複雑性を持つ量子化損失関数の行サンプリングアルゴリズムを提案する。
行サンプリングアルゴリズムに基づいて、量子レグレッションの最も高速なアルゴリズムと、バランスの取れた有向グラフのグラフスペーシフィケーションアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-15T13:40:07Z) - A Study of Performance of Optimal Transport [16.847501106437534]
本稿では,ネットワークの単純化と拡張パスに基づくアルゴリズムが,数値行列スケーリング法より一貫して優れていることを示す。
古典的なKuhn-Munkresアルゴリズムを改良した新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-05-03T20:37:05Z) - Quantum algorithms for hedging and the learning of Ising models [6.346764987071066]
オンライン学習のためのパラダイムアルゴリズムは、FreundとSchapireのHedgeアルゴリズムである。
この研究は、このようなオンライン学習のための量子アルゴリズムを論理的に提示する。
論文 参考訳(メタデータ) (2020-02-14T12:48:53Z) - Accelerating Feedforward Computation via Parallel Nonlinear Equation
Solving [106.63673243937492]
ニューラルネットワークの評価や自己回帰モデルからのサンプリングなどのフィードフォワード計算は、機械学習においてユビキタスである。
本稿では,非線形方程式の解法としてフィードフォワード計算の課題を定式化し,ジャコビ・ガウス・シーデル固定点法とハイブリッド法を用いて解を求める。
提案手法は, 並列化可能な繰り返し回数の削減(あるいは等値化)により, 元のフィードフォワード計算と全く同じ値が与えられることを保証し, 十分な並列化計算能力を付与する。
論文 参考訳(メタデータ) (2020-02-10T10:11:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。