LABNet: Local Graph Aggregation Network with Class Balanced Loss for
Vehicle Re-Identification
- URL: http://arxiv.org/abs/2011.14417v2
- Date: Sun, 31 Jan 2021 04:47:03 GMT
- Title: LABNet: Local Graph Aggregation Network with Class Balanced Loss for
Vehicle Re-Identification
- Authors: Abu Md Niamul Taufique and Andreas Savakis
- Abstract summary: Vehicle re-identification is an important computer vision task where the objective is to identify a specific vehicle.
Recent methods based on deep learning utilize a global average pooling layer after the backbone feature extractor.
We propose local graph aggregation on the backbone feature map, to learn associations of local information.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vehicle re-identification is an important computer vision task where the
objective is to identify a specific vehicle among a set of vehicles seen at
various viewpoints. Recent methods based on deep learning utilize a global
average pooling layer after the backbone feature extractor, however, this
ignores any spatial reasoning on the feature map. In this paper, we propose
local graph aggregation on the backbone feature map, to learn associations of
local information and hence improve feature learning as well as reduce the
effects of partial occlusion and background clutter. Our local graph
aggregation network considers spatial regions of the feature map as nodes and
builds a local neighborhood graph that performs local feature aggregation
before the global average pooling layer. We further utilize a batch
normalization layer to improve the system effectiveness. Additionally, we
introduce a class balanced loss to compensate for the imbalance in the sample
distributions found in the most widely used vehicle re-identification datasets.
Finally, we evaluate our method in three popular benchmarks and show that our
approach outperforms many state-of-the-art methods.
Related papers
- Neural Semantic Map-Learning for Autonomous Vehicles [85.8425492858912]
We present a mapping system that fuses local submaps gathered from a fleet of vehicles at a central instance to produce a coherent map of the road environment.
Our method jointly aligns and merges the noisy and incomplete local submaps using a scene-specific Neural Signed Distance Field.
We leverage memory-efficient sparse feature-grids to scale to large areas and introduce a confidence score to model uncertainty in scene reconstruction.
arXiv Detail & Related papers (2024-10-10T10:10:03Z) - Improving Weakly-Supervised Object Localization Using Adversarial Erasing and Pseudo Label [7.400926717561454]
This paper investigates a framework for weakly-supervised object localization.
It aims to train a neural network capable of predicting both the object class and its location using only images and their image-level class labels.
arXiv Detail & Related papers (2024-04-15T06:02:09Z) - Deep Homography Estimation for Visual Place Recognition [49.235432979736395]
We propose a transformer-based deep homography estimation (DHE) network.
It takes the dense feature map extracted by a backbone network as input and fits homography for fast and learnable geometric verification.
Experiments on benchmark datasets show that our method can outperform several state-of-the-art methods.
arXiv Detail & Related papers (2024-02-25T13:22:17Z) - Optimal Transport Aggregation for Visual Place Recognition [9.192660643226372]
We introduce SALAD, which reformulates NetVLAD's soft-assignment of local features to clusters as an optimal transport problem.
In SALAD, we consider both feature-to-cluster and cluster-to-feature relations and we also introduce a 'dustbin' cluster, designed to selectively discard features deemed non-informative.
Our single-stage method surpasses single-stage baselines in public VPR datasets, but also surpasses two-stage methods that add a re-ranking with significantly higher cost.
arXiv Detail & Related papers (2023-11-27T15:46:19Z) - Background Activation Suppression for Weakly Supervised Object
Localization and Semantic Segmentation [84.62067728093358]
Weakly supervised object localization and semantic segmentation aim to localize objects using only image-level labels.
New paradigm has emerged by generating a foreground prediction map to achieve pixel-level localization.
This paper presents two astonishing experimental observations on the object localization learning process.
arXiv Detail & Related papers (2023-09-22T15:44:10Z) - Improving Online Lane Graph Extraction by Object-Lane Clustering [106.71926896061686]
We propose an architecture and loss formulation to improve the accuracy of local lane graph estimates.
The proposed method learns to assign the objects to centerlines by considering the centerlines as cluster centers.
We show that our method can achieve significant performance improvements by using the outputs of existing 3D object detection methods.
arXiv Detail & Related papers (2023-07-20T15:21:28Z) - Adaptive Local-Component-aware Graph Convolutional Network for One-shot
Skeleton-based Action Recognition [54.23513799338309]
We present an Adaptive Local-Component-aware Graph Convolutional Network for skeleton-based action recognition.
Our method provides a stronger representation than the global embedding and helps our model reach state-of-the-art.
arXiv Detail & Related papers (2022-09-21T02:33:07Z) - Clustering augmented Self-Supervised Learning: Anapplication to Land
Cover Mapping [10.720852987343896]
We introduce a new method for land cover mapping by using a clustering based pretext task for self-supervised learning.
We demonstrate the effectiveness of the method on two societally relevant applications.
arXiv Detail & Related papers (2021-08-16T19:35:43Z) - High-Order Information Matters: Learning Relation and Topology for
Occluded Person Re-Identification [84.43394420267794]
We propose a novel framework by learning high-order relation and topology information for discriminative features and robust alignment.
Our framework significantly outperforms state-of-the-art by6.5%mAP scores on Occluded-Duke dataset.
arXiv Detail & Related papers (2020-03-18T12:18:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.