論文の概要: An accelerated hybrid data-driven/model-based approach for
poroelasticity problems with multi-fidelity multi-physics data
- arxiv url: http://arxiv.org/abs/2012.00165v1
- Date: Mon, 30 Nov 2020 23:36:05 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-06 15:33:27.473892
- Title: An accelerated hybrid data-driven/model-based approach for
poroelasticity problems with multi-fidelity multi-physics data
- Title(参考訳): マルチフィジィマルチフィジカルデータを用いたポロ弾性問題に対するハイブリッドデータ駆動/モデルベースアプローチの高速化
- Authors: Bahador Bahmani, WaiChing Sun
- Abstract要約: 本稿では,多孔性問題を解決するためのハイブリッドモデル/モデルフリーなデータ駆動手法を提案する。
固体弾性と液圧応答の相違に対処するために, ハイブリッドモデルを導入する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a hybrid model/model-free data-driven approach to solve
poroelasticity problems. Extending the data-driven modeling framework
originated from Kirchdoerfer and Ortiz (2016), we introduce one model-free and
two hybrid model-based/data-driven formulations capable of simulating the
coupled diffusion-deformation of fluid-infiltrating porous media with different
amounts of available data. To improve the efficiency of the model-free data
search, we introduce a distance-minimized algorithm accelerated by a
k-dimensional tree search. To handle the different fidelities of the solid
elasticity and fluid hydraulic constitutive responses, we introduce a
hybridized model in which either the solid and the fluid solver can switch from
a model-based to a model-free approach depending on the availability and the
properties of the data. Numerical experiments are designed to verify the
implementation and compare the performance of the proposed model to other
alternatives.
- Abstract(参考訳): 本稿では,多弾性問題を解くためのハイブリッドモデル/モデルフリーデータ駆動手法を提案する。
kirchdoerfer と ortiz (2016) を起源とするデータ駆動型モデリングフレームワークを拡張し,多孔質多孔質媒体の混合拡散変形を異なるデータ量でシミュレート可能な,モデルフリーと2つのハイブリッドモデルベース/データ駆動型定式法を提案する。
モデルフリーデータ探索の効率を向上させるため,k次元木探索により高速化された距離最小化アルゴリズムを提案する。
固体弾性と流体構成応答の異なるフィダリティを扱うために, 固体と流体ソルバのいずれでも, 可用性と特性に応じてモデルベースからモデルフリーアプローチに切り替えることができるハイブリダライズモデルを提案する。
数値実験は,提案モデルの実装を検証し,他の代替モデルと比較するために設計されている。
関連論文リスト
- Generating Synthetic Net Load Data with Physics-informed Diffusion Model [0.8848340429852071]
条件付き認知ニューラルネットワークは、拡散モデルの遷移核のパラメータを共同で訓練するように設計されている。
総合的な評価指標を用いて、生成された合成ネット負荷データの正確性と多様性を評価する。
論文 参考訳(メタデータ) (2024-06-04T02:50:19Z) - On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
拡散に基づく生成モデルは微分方程式を用いて、複素データ分布と抽出可能な事前分布の間の滑らかな接続を確立する。
本稿では,拡散モデルのODEに基づくサンプリングプロセスにおいて,いくつかの興味深い軌道特性を同定する。
論文 参考訳(メタデータ) (2024-05-18T15:59:41Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
シミュレーションベース推論(SBI)は、入力パラメータを所定の観測に関連付ける後部分布を近似することができる。
本研究では、モデルのパラメータをより正確に推測するために、複数の観測値が利用できる、背の高いデータ拡張について考察する。
提案手法を,最近提案した各種数値実験の競合手法と比較し,数値安定性と計算コストの観点から,その優位性を実証した。
論文 参考訳(メタデータ) (2024-04-11T09:23:36Z) - A Priori Uncertainty Quantification of Reacting Turbulence Closure Models using Bayesian Neural Networks [0.0]
反応流モデルにおける不確実性を捉えるためにベイズニューラルネットワークを用いる。
我々は、BNNモデルが、データ駆動クロージャモデルの不確実性の構造に関するユニークな洞察を提供することができることを示した。
このモデルの有効性は,様々な火炎条件と燃料からなるデータセットに対する事前評価によって実証される。
論文 参考訳(メタデータ) (2024-02-28T22:19:55Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
本稿では,自己消費ループ内で生成モデルを訓練する新たな課題に取り組む。
我々は,このトレーニングが将来のモデルで学習したデータ分布に与える影響を厳格に評価するための理論的枠組みを構築した。
カーネル密度推定の結果は,混合データトレーニングがエラー伝播に与える影響など,微妙な洞察を与える。
論文 参考訳(メタデータ) (2024-02-19T02:08:09Z) - CoCoGen: Physically-Consistent and Conditioned Score-based Generative Models for Forward and Inverse Problems [1.0923877073891446]
この研究は生成モデルの到達範囲を物理的問題領域に拡張する。
基礎となるPDEとの整合性を促進するための効率的なアプローチを提案する。
各種物理課題におけるスコアベース生成モデルの可能性と汎用性を示す。
論文 参考訳(メタデータ) (2023-12-16T19:56:10Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
本稿では,人気のある分散拡散型SDEのODEに基づくサンプリングについて検討する。
我々は、最適なODEベースのサンプリングと古典的な平均シフト(モード探索)アルゴリズムの理論的関係を確立する。
論文 参考訳(メタデータ) (2023-05-31T15:33:16Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Differentiable physics-enabled closure modeling for Burgers' turbulence [0.0]
本稿では、既知の物理と機械学習を組み合わせて乱流問題に対するクロージャモデルを開発する微分可能な物理パラダイムを用いたアプローチについて論じる。
我々は、モデルの有効性をテストするために、後方損失関数上の様々な物理仮定を組み込んだ一連のモデルを訓練する。
既知物理あるいは既存の閉包アプローチを含む偏微分方程式の形で帰納バイアスを持つ制約モデルが、非常にデータ効率が高く、正確で、一般化可能なモデルを生成することを発見した。
論文 参考訳(メタデータ) (2022-09-23T14:38:01Z) - Stability Preserving Data-driven Models With Latent Dynamics [0.0]
本稿では,潜在変数を用いた動的問題に対するデータ駆動型モデリング手法を提案する。
本稿では,結合力学の安定性を容易に適用できるモデルフレームワークを提案する。
論文 参考訳(メタデータ) (2022-04-20T00:41:10Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
現在の自己エンコーダに基づく非絡み合い表現学習法は、(集合体)後部をペナルティ化し、潜伏因子の統計的独立を促進することで、非絡み合いを実現する。
本稿では,不整合因子をペナルティに基づく不整合表現学習法を用いて学習する,新しい多段階モデリング手法を提案する。
次に、低品質な再構成を、欠落した関連潜伏変数をモデル化するために訓練された別の深層生成モデルで改善する。
論文 参考訳(メタデータ) (2020-10-25T18:51:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。