Dynamic covariate balancing: estimating treatment effects over time with
potential local projections
- URL: http://arxiv.org/abs/2103.01280v4
- Date: Fri, 26 Jan 2024 20:13:37 GMT
- Title: Dynamic covariate balancing: estimating treatment effects over time with
potential local projections
- Authors: Davide Viviano, Jelena Bradic
- Abstract summary: We study the estimation and inference of treatment histories in panel data settings when treatments change dynamically over time.
Our approach projects potential outcomes' expectations on past histories.
- Score: 0.32634122554914
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper studies the estimation and inference of treatment histories in
panel data settings when treatments change dynamically over time.
We propose a method that allows for (i) treatments to be assigned dynamically
over time based on high-dimensional covariates, past outcomes and treatments;
(ii) outcomes and time-varying covariates to depend on treatment trajectories;
(iii) heterogeneity of treatment effects.
Our approach recursively projects potential outcomes' expectations on past
histories. It then controls the bias by balancing dynamically observable
characteristics. We study the asymptotic and numerical properties of the
estimator and illustrate the benefits of the procedure in an empirical
application.
Related papers
- Difference-in-Differences with Time-varying Continuous Treatments using Double/Debiased Machine Learning [0.0]
We propose a difference-in-differences (DiD) method for continuous treatment and multiple time periods.
Our framework assesses the average treatment effect on the treated (ATET) when comparing two non-zero treatment doses.
arXiv Detail & Related papers (2024-10-28T15:10:43Z) - Disentangled Representation via Variational AutoEncoder for Continuous Treatment Effect Estimation [1.105274635981989]
We propose a novel Dose-Response curve estimator via Variational AutoEncoder (DRVAE)
We show that our model outperforms the current state-of-the-art methods.
arXiv Detail & Related papers (2024-06-04T13:41:07Z) - TCFimt: Temporal Counterfactual Forecasting from Individual Multiple
Treatment Perspective [50.675845725806724]
We propose a comprehensive framework of temporal counterfactual forecasting from an individual multiple treatment perspective (TCFimt)
TCFimt constructs adversarial tasks in a seq2seq framework to alleviate selection and time-varying bias and designs a contrastive learning-based block to decouple a mixed treatment effect into separated main treatment effects and causal interactions.
The proposed method shows satisfactory performance in predicting future outcomes with specific treatments and in choosing optimal treatment type and timing than state-of-the-art methods.
arXiv Detail & Related papers (2022-12-17T15:01:05Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
Estimating personalized effects of treatments is a complex, yet pervasive problem.
Recent developments in the machine learning literature on heterogeneous treatment effect estimation gave rise to many sophisticated, but opaque, tools.
We use post-hoc feature importance methods to identify features that influence the model's predictions.
arXiv Detail & Related papers (2022-06-16T17:59:05Z) - Disentangled Counterfactual Recurrent Networks for Treatment Effect
Inference over Time [71.30985926640659]
We introduce the Disentangled Counterfactual Recurrent Network (DCRN), a sequence-to-sequence architecture that estimates treatment outcomes over time.
With an architecture that is completely inspired by the causal structure of treatment influence over time, we advance forecast accuracy and disease understanding.
We demonstrate that DCRN outperforms current state-of-the-art methods in forecasting treatment responses, on both real and simulated data.
arXiv Detail & Related papers (2021-12-07T16:40:28Z) - SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event
Data [83.50281440043241]
We study the problem of inferring heterogeneous treatment effects from time-to-event data.
We propose a novel deep learning method for treatment-specific hazard estimation based on balancing representations.
arXiv Detail & Related papers (2021-10-26T20:13:17Z) - Evaluating (weighted) dynamic treatment effects by double machine
learning [0.12891210250935145]
We consider evaluating the causal effects of dynamic treatments in a data-driven way under a selection-on-observables assumption.
We make use of so-called Neyman-orthogonal score functions, which imply the robustness of treatment effect estimation to moderate (local) misspecifications.
We demonstrate that the estimators are regularityally normal and $sqrtn$-consistent under specific conditions.
arXiv Detail & Related papers (2020-12-01T09:55:40Z) - Estimating Counterfactual Treatment Outcomes over Time Through
Adversarially Balanced Representations [114.16762407465427]
We introduce the Counterfactual Recurrent Network (CRN) to estimate treatment effects over time.
CRN uses domain adversarial training to build balancing representations of the patient history.
We show how our model achieves lower error in estimating counterfactuals and in choosing the correct treatment and timing of treatment.
arXiv Detail & Related papers (2020-02-10T20:47:36Z) - Generalization Bounds and Representation Learning for Estimation of
Potential Outcomes and Causal Effects [61.03579766573421]
We study estimation of individual-level causal effects, such as a single patient's response to alternative medication.
We devise representation learning algorithms that minimize our bound, by regularizing the representation's induced treatment group distance.
We extend these algorithms to simultaneously learn a weighted representation to further reduce treatment group distances.
arXiv Detail & Related papers (2020-01-21T10:16:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.