論文の概要: Multi-Modal Hybrid Architecture for Pedestrian Action Prediction
- arxiv url: http://arxiv.org/abs/2012.00514v1
- Date: Mon, 16 Nov 2020 15:17:58 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-25 00:58:53.933836
- Title: Multi-Modal Hybrid Architecture for Pedestrian Action Prediction
- Title(参考訳): 歩行者行動予測のためのマルチモーダルハイブリッドアーキテクチャ
- Authors: Amir Rasouli, Tiffany Yau, Mohsen Rohani and Jun Luo
- Abstract要約: 本研究では,歩行者の横断行動を予測するために,環境から取得したさまざまな情報ソースを組み込んだ新しいマルチモーダル予測アルゴリズムを提案する。
既存の2次元歩行者行動ベンチマークと新たに注釈付けされた3次元運転データセットを用いて,提案モデルが歩行者横断予測における最先端性能を達成することを示す。
- 参考スコア(独自算出の注目度): 14.032334569498968
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Pedestrian behavior prediction is one of the major challenges for intelligent
driving systems in urban environments. Pedestrians often exhibit a wide range
of behaviors and adequate interpretations of those depend on various sources of
information such as pedestrian appearance, states of other road users, the
environment layout, etc. To address this problem, we propose a novel
multi-modal prediction algorithm that incorporates different sources of
information captured from the environment to predict future crossing actions of
pedestrians. The proposed model benefits from a hybrid learning architecture
consisting of feedforward and recurrent networks for analyzing visual features
of the environment and dynamics of the scene. Using the existing 2D pedestrian
behavior benchmarks and a newly annotated 3D driving dataset, we show that our
proposed model achieves state-of-the-art performance in pedestrian crossing
prediction.
- Abstract(参考訳): 歩行者行動予測は、都市環境におけるインテリジェント運転システムの大きな課題の1つである。
歩行者は、歩行者の外観、他の道路利用者の状態、環境レイアウトなど、様々な情報ソースに依存する様々な行動や適切な解釈を示すことが多い。
そこで本研究では, 歩行者の横断行動を予測するために, 環境から取得した異なる情報ソースを組み込んだマルチモーダル予測アルゴリズムを提案する。
提案モデルは,環境の視覚的特徴とシーンのダイナミックスを分析するために,フィードフォワードとリカレントネットワークで構成されるハイブリッド学習アーキテクチャの恩恵を受ける。
既存の2次元歩行者行動ベンチマークと新たにアノテートされた3次元運転データセットを用いて,提案モデルが歩行者横断予測における最先端性能を実現することを示す。
関連論文リスト
- PIP-Net: Pedestrian Intention Prediction in the Wild [11.799731429829603]
PIP-Netは、現実の都市シナリオにおいて、AVによる歩行者横断意図を予測するために設計された新しいフレームワークである。
我々は、異なるカメラマウントとセットアップ用に設計された2種類のPIP-Netを提供する。
提案モデルでは、繰り返し時間的注意に基づく解を用いて、最先端の性能を向上する。
最初に、カスタマイズされた歩行者意図予測データセットであるUrban-PIPデータセットを提示する。
論文 参考訳(メタデータ) (2024-02-20T08:28:45Z) - PedFormer: Pedestrian Behavior Prediction via Cross-Modal Attention
Modulation and Gated Multitask Learning [10.812772606528172]
本研究では,エゴ中心の視点から,歩行者の将来の軌跡や横断行動を予測するために,異なるデータモダリティに依存する新しい枠組みを提案する。
本モデルでは, トラジェクトリとアクション予測の精度を, それぞれ22%, 13%向上した。
論文 参考訳(メタデータ) (2022-10-14T15:12:00Z) - Conditioned Human Trajectory Prediction using Iterative Attention Blocks [70.36888514074022]
本研究では,都市環境における歩行者位置予測を目的とした,簡易かつ効果的な歩行者軌道予測モデルを提案する。
我々のモデルは、複数のアテンションブロックとトランスフォーマーを反復的に実行できるニューラルネットワークアーキテクチャである。
ソーシャルマスク, 動的モデル, ソーシャルプーリング層, 複雑なグラフのような構造を明示的に導入することなく, SoTAモデルと同等の結果が得られることを示す。
論文 参考訳(メタデータ) (2022-06-29T07:49:48Z) - Predicting Future Occupancy Grids in Dynamic Environment with
Spatio-Temporal Learning [63.25627328308978]
本稿では,将来の占有予測を生成するための時間的予測ネットワークパイプラインを提案する。
現在のSOTAと比較して、我々の手法は3秒の長い水平線での占有を予測している。
我々は、さらなる研究を支援するために、nulisに基づくグリッド占有データセットを公開します。
論文 参考訳(メタデータ) (2022-05-06T13:45:32Z) - Pedestrian Stop and Go Forecasting with Hybrid Feature Fusion [87.77727495366702]
歩行者の立ち止まりと予測の新たな課題を紹介します。
都市交通における歩行者の立ち寄り行動を明示的に研究するためのベンチマークであるTransをリリースする。
歩行者の歩行動作に注釈を付けたいくつかの既存のデータセットから構築し、さまざまなシナリオや行動を実現する。
論文 参考訳(メタデータ) (2022-03-04T18:39:31Z) - Euro-PVI: Pedestrian Vehicle Interactions in Dense Urban Centers [126.81938540470847]
歩行者と自転車の軌跡のデータセットであるEuro-PVIを提案する。
本研究では,都市環境におけるエージェント間のマルチモーダル共有潜在空間を表現的に学習する共同推論モデルを開発する。
我々は,エゴ車と歩行者(自転車)の相互作用を正確に予測するために捉えることの重要性を示すnuScenesとEuro-PVIデータセット上での成果を達成した。
論文 参考訳(メタデータ) (2021-06-22T15:40:21Z) - Divide-and-Conquer for Lane-Aware Diverse Trajectory Prediction [71.97877759413272]
軌道予測は、自動運転車が行動を計画し実行するための安全クリティカルなツールです。
近年の手法は,WTAやベスト・オブ・マニーといったマルチコース学習の目標を用いて,強力なパフォーマンスを実現している。
我々の研究は、軌道予測、学習出力、そして運転知識を使って制約を課すことによるより良い予測における2つの重要な課題に対処する。
論文 参考訳(メタデータ) (2021-04-16T17:58:56Z) - LookOut: Diverse Multi-Future Prediction and Planning for Self-Driving [139.33800431159446]
LookOutは、環境を共同で知覚し、センサーデータから様々な未来を予測するアプローチである。
本モデルでは,大規模自動運転データセットにおいて,より多様性があり,サンプル効率のよい動き予測を行う。
論文 参考訳(メタデータ) (2021-01-16T23:19:22Z) - Graph-SIM: A Graph-based Spatiotemporal Interaction Modelling for
Pedestrian Action Prediction [10.580548257913843]
本稿では,歩行者の横断行動を予測するための新しいグラフベースモデルを提案する。
既存のnuScenesデータセットに対して、3Dバウンディングボックスと歩行者行動アノテーションを提供する新しいデータセットを紹介します。
提案手法は,既存の手法と比較して,様々な指標を15%以上改善し,最先端の性能を実現する。
論文 参考訳(メタデータ) (2020-12-03T18:28:27Z) - Pedestrian Action Anticipation using Contextual Feature Fusion in
Stacked RNNs [19.13270454742958]
交差点における歩行者行動予測問題の解法を提案する。
提案手法では,シーン動的・視覚的特徴の両面から収集した情報を徐々にネットワークに融合する新しいRNNアーキテクチャを用いる。
論文 参考訳(メタデータ) (2020-05-13T20:59:37Z) - MCENET: Multi-Context Encoder Network for Homogeneous Agent Trajectory
Prediction in Mixed Traffic [35.22312783822563]
都市混合交通圏における軌道予測は多くのインテリジェント交通システムにとって重要である。
本稿では,過去と未来の両方のシーンコンテキストを符号化して学習するマルチコンテキストネットワーク(MCENET)を提案する。
推定時間において,対象エージェントの過去の状況と動作情報と潜伏変数のサンプリングを組み合わせ,複数の現実的軌跡を予測する。
論文 参考訳(メタデータ) (2020-02-14T11:04:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。