論文の概要: Simulating Surface Wave Dynamics with Convolutional Networks
- arxiv url: http://arxiv.org/abs/2012.00718v1
- Date: Tue, 1 Dec 2020 18:27:24 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-31 01:23:14.423090
- Title: Simulating Surface Wave Dynamics with Convolutional Networks
- Title(参考訳): 畳み込みネットワークによる表面波動のシミュレーション
- Authors: Mario Lino, Chris Cantwell, Stathi Fotiadis, Eduardo Pignatelli, Anil
Bharath
- Abstract要約: 我々は、U-Netアーキテクチャに注目し、トレーニング中に見えない幾何学的構成にどのように一般化するかを分析する。
修正されたU-Netアーキテクチャは、曲面および多面的開かつ閉幾何学における液体表面上の波高分布を正確に予測できることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate the performance of fully convolutional networks to simulate
the motion and interaction of surface waves in open and closed complex
geometries. We focus on a U-Net architecture and analyse how well it
generalises to geometric configurations not seen during training. We
demonstrate that a modified U-Net architecture is capable of accurately
predicting the height distribution of waves on a liquid surface within curved
and multi-faceted open and closed geometries, when only simple box and
right-angled corner geometries were seen during training. We also consider a
separate and independent 3D CNN for performing time-interpolation on the
predictions produced by our U-Net. This allows generating simulations with a
smaller time-step size than the one the U-Net has been trained for.
- Abstract(参考訳): 開かつ閉複素幾何学における表面波の運動と相互作用をシミュレートする完全畳み込みネットワークの性能について検討する。
我々は、U-Netアーキテクチャに注目し、トレーニング中に見えない幾何学的構成にどのように一般化するかを分析する。
改良されたU-Netアーキテクチャは、訓練中に単純なボックスと右角の角のジオメトリーしか見つからなかったとき、曲面および多面の開かつ閉じたジオメトリー内の液体表面の波高分布を正確に予測できることを示した。
また, u-net が生成する予測の時間補間を行うため, 独立した3次元 cnn も検討する。
これにより、U-Netがトレーニングしたものよりも時間ステップの小さいシミュレーションを生成することができる。
関連論文リスト
- GraphCSPN: Geometry-Aware Depth Completion via Dynamic GCNs [49.55919802779889]
本稿では,グラフ畳み込みに基づく空間伝搬ネットワーク(GraphCSPN)を提案する。
本研究では、幾何学的表現学習において、畳み込みニューラルネットワークとグラフニューラルネットワークを相補的に活用する。
提案手法は,数段の伝搬ステップのみを使用する場合と比較して,最先端の性能を実現する。
論文 参考訳(メタデータ) (2022-10-19T17:56:03Z) - Laplacian2Mesh: Laplacian-Based Mesh Understanding [4.808061174740482]
我々は3次元トライアングルメッシュのための新しいフレキシブル畳み込みニューラルネットワーク(CNN)モデルであるLaplacian2Meshを紹介した。
メッシュプーリングはラプラシアンの多空間変換によりネットワークの受容場を拡張するために適用される。
3Dメッシュに適用されたさまざまな学習タスクの実験は、Laplacian2Meshの有効性と効率を実証している。
論文 参考訳(メタデータ) (2022-02-01T10:10:13Z) - Multi-view Depth Estimation using Epipolar Spatio-Temporal Networks [87.50632573601283]
一つのビデオから多視点深度を推定する新しい手法を提案する。
提案手法は,新しいEpipolar Spatio-Temporal Transformer(EST)を用いて時間的コヒーレントな深度推定を行う。
最近のMixture-of-Expertsモデルにインスパイアされた計算コストを削減するため、我々はコンパクトなハイブリッドネットワークを設計する。
論文 参考訳(メタデータ) (2020-11-26T04:04:21Z) - Deep Active Surface Models [60.027353171412216]
アクティブサーフェスモデルは複雑な3次元表面をモデル化するのに有用な長い歴史を持っているが、ディープネットワークと組み合わせて使用されるのはアクティブ・コンターのみである。
グラフ畳み込みネットワークにシームレスに統合して、洗練された滑らかさを強制できるレイヤを導入します。
論文 参考訳(メタデータ) (2020-11-17T18:48:28Z) - Primal-Dual Mesh Convolutional Neural Networks [62.165239866312334]
本稿では,グラフ・ニューラル・ネットワークの文献からトライアングル・メッシュへ引き起こされた原始双対のフレームワークを提案する。
提案手法は,3次元メッシュのエッジと顔の両方を入力として特徴付け,動的に集約する。
メッシュ単純化の文献から得られたツールを用いて、我々のアプローチに関する理論的知見を提供する。
論文 参考訳(メタデータ) (2020-10-23T14:49:02Z) - A Point-Cloud Deep Learning Framework for Prediction of Fluid Flow
Fields on Irregular Geometries [62.28265459308354]
ネットワークは空間位置とCFD量のエンドツーエンドマッピングを学習する。
断面形状の異なるシリンダーを過ぎる非圧縮層状定常流を考察する。
ネットワークは従来のCFDの数百倍の速さで流れ場を予測する。
論文 参考訳(メタデータ) (2020-10-15T12:15:02Z) - Predicting the flow field in a U-bend with deep neural networks [0.0]
本稿では計算流体力学(CFD)と深部ニューラルネットワークに基づく,異なる歪んだU字管内の流れ場を予測することを目的とした研究について述べる。
この研究の主な動機は、流体力学的船体最適化プロセスにおけるディープラーニングパラダイムの正当化に関する洞察を得ることであった。
論文 参考訳(メタデータ) (2020-10-01T09:03:02Z) - Learning Local Neighboring Structure for Robust 3D Shape Representation [143.15904669246697]
3Dメッシュの表現学習は多くのコンピュータビジョンやグラフィックスアプリケーションにおいて重要である。
局所構造認識型異方性畳み込み操作(LSA-Conv)を提案する。
本モデルでは,3次元形状復元において最先端の手法に比べて顕著な改善が得られた。
論文 参考訳(メタデータ) (2020-04-21T13:40:03Z) - Deep Manifold Prior [37.725563645899584]
本稿では,3次元形状の表面などの多様体構造データに先行する手法を提案する。
この方法で生成された曲面は滑らかであり、ガウス過程を特徴とする制限的な挙動を示し、完全連結および畳み込みネットワークに対して数学的にそのような特性を導出する。
論文 参考訳(メタデータ) (2020-04-08T20:47:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。