Broadband sensitivity improvement via coherent quantum feedback with PT
symmetry
- URL: http://arxiv.org/abs/2012.00836v1
- Date: Tue, 1 Dec 2020 21:27:14 GMT
- Title: Broadband sensitivity improvement via coherent quantum feedback with PT
symmetry
- Authors: Xiang Li, Maxim Goryachev, Yiqiu Ma, Michael E. Tobar, Chunnong Zhao,
Rana X Adhikari, Yanbei Chen
- Abstract summary: We propose a stable quantum amplifier applicable to linear systems operating at the fundamental detection limits.
Sensitivity improvements are shown for laser-interferometric gravitational-wave detectors and microwave cavity axion detectors.
- Score: 9.717134926446956
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A conventional resonant detector is often subject to a trade-off between
bandwidth and peak sensitivity that can be traced back to quantum Cramer-Rao
Bound. Anomalous dispersion has been shown to improve it by signal
amplification and is thus more robust against decoherence, while it leads to
instabilities. We propose a stable quantum amplifier applicable to linear
systems operating at the fundamental detection limits, enabled by two-mode
non-degenerate parametric amplification. At threshold, one mode of the
amplifier forms a PT-symmetric system of original detector mode. Sensitivity
improvements are shown for laser-interferometric gravitational-wave detectors
and microwave cavity axion detectors.
Related papers
- Kinetic Inductance Parametric Converter [0.0]
Parametric converters are used for amplifying and squeezing microwave signals in quantum computing and sensing.
In current devices, the strong localized nonlinearity of the Josephson Junction limits the amplification and squeezing.
A weak distributed nonlinearity can provide higher gain and dynamic range, when implemented as a kinetic inductance (KI) nanowire of a dirty superconductor.
arXiv Detail & Related papers (2024-07-19T05:56:08Z) - Josephson bifurcation readout: beyond the monochromatic approximation [49.1574468325115]
We analyze properties of bifurcation quantum detectors based on weakly nonlinear superconducting resonance circuits.
This circuit can serve as an efficient detector of the quantum state of superconducting qubits.
arXiv Detail & Related papers (2024-05-25T22:22:37Z) - Frequency-dependent squeezing for gravitational-wave detection through quantum teleportation [4.647804073850528]
Ground-based interferometric gravitational wave detectors are highly precise sensors for weak forces.
Current and future instruments address this limitation by injecting frequency-dependent squeezed vacuum into the detection port.
This study introduces a novel scheme employing the principles of quantum teleportation and entangled states of light.
arXiv Detail & Related papers (2024-01-09T00:26:25Z) - Low-loss Millimeter-wave Resonators with an Improved Coupling Structure [39.76747788992184]
Millimeter-wave superconducting resonators are a useful tool for studying quantum device coherence in a new frequency domain.
We develop and characterize a tapered transition structure coupling a rectangular waveguide to a planar slotline waveguide with better than 0.5 dB efficiency over 14 GHz.
Having decoupled the resonators from radiative losses, we consistently achieve single-photon quality factors above $105$, with a two-level-system loss limit above $106$.
arXiv Detail & Related papers (2023-11-03T02:26:44Z) - Single-Mode Squeezed Light Generation and Tomography with an Integrated
Optical Parametric Oscillator [31.874825130479174]
A key resource is squeezed light, where quantum noise is redistributed between optical quadratures.
We introduce a monolithic, chip-scale platform that exploits the $chi(2)$ nonlinearity of a thin-film lithium niobate resonator device.
Our work represents a substantial step toward compact and efficient quantum optical systems.
arXiv Detail & Related papers (2023-10-19T17:53:36Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Quantum Limits on the Capacity of Multispan Links with Phase-sensitive
Amplification [5.156484100374058]
We show that the quantum advantage over the standard approach based on optical quadrature detection is small and vanishes for long links.
We derive ultimate limits determined by the laws of quantum mechanics on the capacity of multispan links with phase sensitive amplification.
arXiv Detail & Related papers (2022-07-21T18:00:09Z) - Macroscopic noise amplification by asymmetric dyads in non-Hermitian
optical systems for generative diffusion models [55.2480439325792]
asymmetric non-Hermitian dyads are promising candidates for efficient sensors and ultra-fast random number generators.
integrated light emission from such asymmetric dyads can be efficiently used for all-optical degenerative diffusion models of machine learning.
arXiv Detail & Related papers (2022-06-24T10:19:36Z) - Nonlinear quantum spectroscopy with Parity-Time symmetric integrated
circuits [1.6115416828780253]
We propose a novel quantum nonlinear interferometer design that incorporates a passive PT symmetric coupler sandwiched between two nonlinear sections.
We identify a new phenomenon of sharp signal intensity fringe shift at critical idler loss values, which is distinct from the previously studied PT-symmetry breaking.
arXiv Detail & Related papers (2022-03-16T15:52:45Z) - Quantum Dot-Based Parametric Amplifiers [0.0]
Josephson parametric amplifiers (JPAs) approaching quantum-limited noise performance have been instrumental in enabling high fidelity readout of superconducting qubits and, recently, semiconductor quantum dots (QDs)
We propose that the quantum capacitance arising in electronic two-level systems can provide an alternative dissipation-less non-linear element for parametric amplification.
We experimentally demonstrate phase-sensitive parametric amplification using a QD-reservoir electron transition in a CMOS nanowire split-gate transistor embedded in a 1.8GHz superconducting lumped-element microwave cavity.
arXiv Detail & Related papers (2021-11-23T12:40:47Z) - An integrated magnetometry platform with stackable waveguide-assisted
detection channels for sensing arrays [45.82374977939355]
We present a novel architecture which allows us to create NV$-$-centers a few nanometers below the diamond surface.
We experimentally verify the coupling efficiency, showcase the detection of magnetic resonance signals through the waveguides and perform first proof-of-principle experiments in magnetic field and temperature sensing.
In the future, our approach will enable the development of two-dimensional sensing arrays facilitating spatially and temporally correlated magnetometry.
arXiv Detail & Related papers (2020-12-04T12:59:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.