論文の概要: A compact sequence encoding scheme for online human activity recognition
in HRI applications
- arxiv url: http://arxiv.org/abs/2012.00873v1
- Date: Tue, 1 Dec 2020 22:33:09 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-30 19:42:45.476551
- Title: A compact sequence encoding scheme for online human activity recognition
in HRI applications
- Title(参考訳): HRIアプリケーションにおけるオンライン人間行動認識のためのコンパクトシーケンス符号化方式
- Authors: Georgios Tsatiris, Kostas Karpouzis, Stefanos Kollias
- Abstract要約: 本稿では,時間的動作を効率よくコンパクトな表現に変換する新しいアクションシーケンス符号化方式を提案する。
この表現は、軽量畳み込みニューラルネットワークの入力として使用することができる。
実験により、提案したパイプラインは、堅牢なエンドツーエンドのオンラインアクション認識スキームを提供できることが示された。
- 参考スコア(独自算出の注目度): 0.8397702677752039
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Human activity recognition and analysis has always been one of the most
active areas of pattern recognition and machine intelligence, with applications
in various fields, including but not limited to exertion games, surveillance,
sports analytics and healthcare. Especially in Human-Robot Interaction, human
activity understanding plays a crucial role as household robotic assistants are
a trend of the near future. However, state-of-the-art infrastructures that can
support complex machine intelligence tasks are not always available, and may
not be for the average consumer, as robotic hardware is expensive. In this
paper we propose a novel action sequence encoding scheme which efficiently
transforms spatio-temporal action sequences into compact representations, using
Mahalanobis distance-based shape features and the Radon transform. This
representation can be used as input for a lightweight convolutional neural
network. Experiments show that the proposed pipeline, when based on
state-of-the-art human pose estimation techniques, can provide a robust
end-to-end online action recognition scheme, deployable on hardware lacking
extreme computing capabilities.
- Abstract(参考訳): 人間の行動認識と分析は常にパターン認識と機械学習の最も活発な分野の1つであり、運動ゲーム、監視、スポーツ分析、医療など様々な分野に応用されている。
特に人間-ロボットインタラクションでは、家庭用ロボットアシスタントが近い将来のトレンドとなるため、人間の活動理解が重要な役割を果たす。
しかし、複雑なマシンインテリジェンスタスクをサポートする最先端のインフラストラクチャは、常に利用可能ではなく、ロボットハードウェアが高価であるため、平均的な消費者には提供されないかもしれない。
本稿では,マハラノビス距離に基づく形状特徴とラドン変換を用いて,時空間的動作列をコンパクトな表現に変換する新しい動作系列符号化方式を提案する。
この表現は、軽量畳み込みニューラルネットワークの入力として使用できる。
実験によると、提案されたパイプラインは最先端の人間のポーズ推定技術に基づいて、高度なコンピューティング能力を持たないハードウェア上にデプロイ可能な、堅牢なエンドツーエンドのオンラインアクション認識スキームを提供することができる。
関連論文リスト
- Real-Time Multimodal Signal Processing for HRI in RoboCup: Understanding a Human Referee [1.7456666582626115]
本研究では、キーポイント抽出と分類によるジェスチャー認識のための2段階パイプラインと、効率的なwhi検出のための連続畳み込みニューラルネットワーク(CCNN)を実装した。
提案されたアプローチは、RoboCupのような競合する環境でのリアルタイムな人間とロボットのインタラクションを強化し、人間と協力できる自律システムの開発を前進させるためのツールを提供する。
論文 参考訳(メタデータ) (2024-11-26T11:39:43Z) - Brain-Inspired Computational Intelligence via Predictive Coding [89.6335791546526]
予測符号化(PC)は、マシンインテリジェンスタスクにおいて有望なパフォーマンスを示している。
PCは様々な脳領域で情報処理をモデル化することができ、認知制御やロボティクスで使用することができる。
論文 参考訳(メタデータ) (2023-08-15T16:37:16Z) - Bridging Active Exploration and Uncertainty-Aware Deployment Using
Probabilistic Ensemble Neural Network Dynamics [11.946807588018595]
本稿では,活発な探索と不確実性を考慮した展開を橋渡しするモデルベース強化学習フレームワークを提案する。
探索と展開の対立する2つのタスクは、最先端のサンプリングベースのMPCによって最適化されている。
自動運転車と車輪付きロボットの両方で実験を行い、探索と展開の両方に有望な結果を示します。
論文 参考訳(メタデータ) (2023-05-20T17:20:12Z) - Robotic Navigation Autonomy for Subretinal Injection via Intelligent
Real-Time Virtual iOCT Volume Slicing [88.99939660183881]
網膜下注射のための自律型ロボットナビゲーションの枠組みを提案する。
提案手法は,機器のポーズ推定方法,ロボットとi OCTシステム間のオンライン登録,およびインジェクションターゲットへのナビゲーションに適した軌道計画から構成される。
ブタ前眼の精度と再現性について実験を行った。
論文 参考訳(メタデータ) (2023-01-17T21:41:21Z) - Active Predicting Coding: Brain-Inspired Reinforcement Learning for
Sparse Reward Robotic Control Problems [79.07468367923619]
ニューラルジェネレーティブ・コーディング(NGC)の神経認知計算フレームワークによるロボット制御へのバックプロパゲーションフリーアプローチを提案する。
我々は、スパース報酬から動的オンライン学習を容易にする強力な予測符号化/処理回路から完全に構築されたエージェントを設計する。
提案するActPCエージェントは,スパース(外部)報酬信号に対して良好に動作し,複数の強力なバックプロップベースのRLアプローチと競合し,性能が優れていることを示す。
論文 参考訳(メタデータ) (2022-09-19T16:49:32Z) - Muscle Vision: Real Time Keypoint Based Pose Classification of Physical
Exercises [52.77024349608834]
ビデオから外挿された3D人間のポーズ認識は、リアルタイムソフトウェアアプリケーションを可能にするまで進歩した。
本稿では,ライブビデオフィード上で人間のポーズ認識を行う新しい機械学習パイプラインとWebインターフェースを提案する。
論文 参考訳(メタデータ) (2022-03-23T00:55:07Z) - A toolbox for neuromorphic sensing in robotics [4.157415305926584]
ロボット上で利用可能なあらゆる種類のセンサからの入力信号をエンコードし、デコードするためのROS(Robot Operating System)ツールボックスを導入する。
このイニシアチブは、ニューロモルフィックAIのロボット統合を刺激し促進することを目的としている。
論文 参考訳(メタデータ) (2021-03-03T23:22:05Z) - Task-relevant Representation Learning for Networked Robotic Perception [74.0215744125845]
本稿では,事前学習されたロボット知覚モデルの最終的な目的と協調して設計された感覚データのタスク関連表現を学習するアルゴリズムを提案する。
本アルゴリズムは,ロボットの知覚データを競合する手法の最大11倍まで積極的に圧縮する。
論文 参考訳(メタデータ) (2020-11-06T07:39:08Z) - Attention-Oriented Action Recognition for Real-Time Human-Robot
Interaction [11.285529781751984]
本稿では,リアルタイムインタラクションの必要性に応えるために,アテンション指向のマルチレベルネットワークフレームワークを提案する。
具体的には、プレアテンションネットワークを使用して、低解像度でシーン内のインタラクションに大まかにフォーカスする。
他のコンパクトCNNは、抽出されたスケルトンシーケンスをアクション認識用の入力として受信する。
論文 参考訳(メタデータ) (2020-07-02T12:41:28Z) - Continuous Emotion Recognition via Deep Convolutional Autoencoder and
Support Vector Regressor [70.2226417364135]
マシンはユーザの感情状態を高い精度で認識できることが不可欠である。
ディープニューラルネットワークは感情を認識する上で大きな成功を収めている。
表情認識に基づく連続的感情認識のための新しいモデルを提案する。
論文 参考訳(メタデータ) (2020-01-31T17:47:16Z) - LE-HGR: A Lightweight and Efficient RGB-based Online Gesture Recognition
Network for Embedded AR Devices [8.509059894058947]
本稿では,低消費電力な組込みデバイス上でのリアルタイムジェスチャー認識を実現するために,軽量で計算効率のよいHGRフレームワークLE-HGRを提案する。
提案手法は高精度でロバスト性があり,様々な複雑な相互作用環境において,高性能な性能を実現することができることを示す。
論文 参考訳(メタデータ) (2020-01-16T05:23:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。