論文の概要: Real-Time Multimodal Signal Processing for HRI in RoboCup: Understanding a Human Referee
- arxiv url: http://arxiv.org/abs/2411.17347v1
- Date: Tue, 26 Nov 2024 11:39:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-27 13:31:18.313609
- Title: Real-Time Multimodal Signal Processing for HRI in RoboCup: Understanding a Human Referee
- Title(参考訳): RoboCupにおけるHRIのリアルタイムマルチモーダル信号処理:人間の参照を理解する
- Authors: Filippo Ansalone, Flavio Maiorana, Daniele Affinita, Flavio Volpi, Eugenio Bugli, Francesco Petri, Michele Brienza, Valerio Spagnoli, Vincenzo Suriani, Daniele Nardi, Domenico D. Bloisi,
- Abstract要約: 本研究では、キーポイント抽出と分類によるジェスチャー認識のための2段階パイプラインと、効率的なwhi検出のための連続畳み込みニューラルネットワーク(CCNN)を実装した。
提案されたアプローチは、RoboCupのような競合する環境でのリアルタイムな人間とロボットのインタラクションを強化し、人間と協力できる自律システムの開発を前進させるためのツールを提供する。
- 参考スコア(独自算出の注目度): 1.7456666582626115
- License:
- Abstract: Advancing human-robot communication is crucial for autonomous systems operating in dynamic environments, where accurate real-time interpretation of human signals is essential. RoboCup provides a compelling scenario for testing these capabilities, requiring robots to understand referee gestures and whistle with minimal network reliance. Using the NAO robot platform, this study implements a two-stage pipeline for gesture recognition through keypoint extraction and classification, alongside continuous convolutional neural networks (CCNNs) for efficient whistle detection. The proposed approach enhances real-time human-robot interaction in a competitive setting like RoboCup, offering some tools to advance the development of autonomous systems capable of cooperating with humans.
- Abstract(参考訳): 人間の信号の正確なリアルタイム解釈が不可欠である、動的環境で動作する自律システムにおいて、人間とロボットのコミュニケーションの促進が不可欠である。
RoboCupは、これらの機能をテストするための魅力的なシナリオを提供する。ロボットはレフェリーのジェスチャーを理解し、最小限のネットワーク依存で口笛を吹く必要がある。
NAOロボットプラットフォームを用いて、キーポイント抽出と分類によるジェスチャー認識のための2段階パイプラインと、効率的なwhi検出のための連続畳み込みニューラルネットワーク(CCNN)を実装した。
提案されたアプローチは、RoboCupのような競合する環境でのリアルタイムな人間とロボットのインタラクションを強化し、人間と協力できる自律システムの開発を前進させるためのツールを提供する。
関連論文リスト
- LPAC: Learnable Perception-Action-Communication Loops with Applications
to Coverage Control [80.86089324742024]
本稿では,その問題に対する学習可能なパーセプション・アクション・コミュニケーション(LPAC)アーキテクチャを提案する。
CNNは局所認識を処理する。グラフニューラルネットワーク(GNN)はロボットのコミュニケーションを促進する。
評価の結果,LPACモデルは標準分散型および集中型カバレッジ制御アルゴリズムよりも優れていた。
論文 参考訳(メタデータ) (2024-01-10T00:08:00Z) - Asynchronous Perception-Action-Communication with Graph Neural Networks [93.58250297774728]
グローバルな目的を達成するため,大規模なロボット群における協調作業は,大規模環境における課題である。
ロボットはパーセプション・アクション・コミュニケーションループを実行し、ローカル環境を認識し、他のロボットと通信し、リアルタイムで行動を起こす必要がある。
近年では、フロッキングやカバレッジ制御などのアプリケーションでグラフニューラルネットワーク(GNN)を使用してこの問題に対処している。
本稿では、分散化されたGNNを用いてナビゲーション動作を計算し、通信のためのメッセージを生成するロボット群における非同期PACフレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-18T21:20:50Z) - Hybrid ASR for Resource-Constrained Robots: HMM - Deep Learning Fusion [0.0]
本稿では,資源制約型ロボットに特化して設計されたハイブリッド音声認識(ASR)システムを提案する。
提案手法は、隠れマルコフモデル(HMM)とディープラーニングモデルを組み合わせて、ソケットプログラミングを利用して処理タスクを効果的に分散する。
このアーキテクチャでは、HMMベースの処理がロボット内で行われ、別のPCがディープラーニングモデルを処理する。
論文 参考訳(メタデータ) (2023-09-11T15:28:19Z) - Simulation of robot swarms for learning communication-aware coordination [0.0]
我々は、全能集中型コントローラから得られる局所的な観測を入力として、エンドツーエンドのニューラルネットワークを訓練する。
実験は、平面ロボットの高性能オープンソースシミュレータであるEnkiで実施されている。
論文 参考訳(メタデータ) (2023-02-25T17:17:40Z) - Active Predicting Coding: Brain-Inspired Reinforcement Learning for
Sparse Reward Robotic Control Problems [79.07468367923619]
ニューラルジェネレーティブ・コーディング(NGC)の神経認知計算フレームワークによるロボット制御へのバックプロパゲーションフリーアプローチを提案する。
我々は、スパース報酬から動的オンライン学習を容易にする強力な予測符号化/処理回路から完全に構築されたエージェントを設計する。
提案するActPCエージェントは,スパース(外部)報酬信号に対して良好に動作し,複数の強力なバックプロップベースのRLアプローチと競合し,性能が優れていることを示す。
論文 参考訳(メタデータ) (2022-09-19T16:49:32Z) - Spatial Computing and Intuitive Interaction: Bringing Mixed Reality and
Robotics Together [68.44697646919515]
本稿では,空間コンピューティングを応用し,新しいロボットのユースケースを実現するためのロボットシステムについて述べる。
空間コンピューティングとエゴセントリックな感覚を複合現実感デバイスに組み合わせることで、人間の行動をキャプチャして理解し、それらを空間的な意味を持つ行動に変換することができる。
論文 参考訳(メタデータ) (2022-02-03T10:04:26Z) - SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots [112.2491765424719]
我々は、データ駆動型アプローチを用いて、異種ロボットチームをグローバルな目標に向けてナビゲートする、エンドツーエンドのオンラインモーションプランニングフレームワークを提案する。
モデル予測制御(SMPC)を用いて,ロボット力学を満たす制御入力を計算し,障害物回避時の不確実性を考慮した。
リカレントニューラルネットワークは、SMPC有限時間地平線解における将来の状態の不確かさを素早く推定するために用いられる。
ディープQ学習エージェントがハイレベルパスプランナーとして機能し、SMPCにロボットを望ましいグローバルな目標に向けて移動させる目標位置を提供する。
論文 参考訳(メタデータ) (2021-08-03T02:56:21Z) - Cognitive architecture aided by working-memory for self-supervised
multi-modal humans recognition [54.749127627191655]
人間パートナーを認識する能力は、パーソナライズされた長期的な人間とロボットの相互作用を構築するための重要な社会的スキルです。
ディープラーニングネットワークは最先端の結果を達成し,そのような課題に対処するための適切なツールであることが実証された。
1つの解決策は、ロボットに自己スーパービジョンで直接の感覚データから学習させることである。
論文 参考訳(メタデータ) (2021-03-16T13:50:24Z) - Autonomous Intruder Detection Using a ROS-Based Multi-Robot System
Equipped with 2D-LiDAR Sensors [0.5512295869673147]
本稿では,中央ロボットMIDNetによる全ロボットからの検知を集中処理する単一距離センサ/ロボットシナリオにおける侵入者検出のためのマルチロボットシステムを提案する。
この作業は、人手なしで倉庫に自律的なマルチロボットセキュリティソリューションを提供することを目的としている。
論文 参考訳(メタデータ) (2020-11-07T19:49:07Z) - Hyperparameters optimization for Deep Learning based emotion prediction
for Human Robot Interaction [0.2549905572365809]
インセプションモジュールをベースとした畳み込みニューラルネットワークアーキテクチャを提案する。
モデルは人型ロボットNAOにリアルタイムに実装され、モデルの堅牢性を評価する。
論文 参考訳(メタデータ) (2020-01-12T05:25:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。