論文の概要: Tensor Data Scattering and the Impossibility of Slicing Theorem
- arxiv url: http://arxiv.org/abs/2012.01982v1
- Date: Wed, 2 Dec 2020 03:27:30 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-25 03:50:00.052178
- Title: Tensor Data Scattering and the Impossibility of Slicing Theorem
- Title(参考訳): テンソルデータ散乱とスライシング定理の不可能性
- Authors: Wuming Pan
- Abstract要約: 本稿では,データ散乱を実装するための性能解析と加速器最適化に非常に重要な定理を提案する。
本稿では,ScatterXというアルゴリズムを提案し,そのソースコードを提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper establishes a broad theoretical framework for tensor data
dissemination methods used in various deep learning frameworks. This paper
gives a theorem that is very important for performance analysis and accelerator
optimization for implementing data scattering. The theorem shows how the
impossibility of slicing happens in tenser data scattering. This paper proposes
an algorithm called ScatterX and its source code is provided.
- Abstract(参考訳): 本稿では,様々なディープラーニングフレームワークで使用されるテンソルデータ拡散手法の広範な理論的枠組みを確立する。
本稿では,データ散乱を実装するための性能解析と加速器最適化に非常に重要な定理を提案する。
この定理はテンソルデータ散乱においてスライシングの不合理性がどのように起こるかを示している。
本稿では,ScatterXというアルゴリズムを提案し,そのソースコードを提供する。
関連論文リスト
- Alchemy: Amplifying Theorem-Proving Capability through Symbolic Mutation [71.32761934724867]
この研究は、記号的突然変異を通じて形式的な定理を構成するデータ合成のフレームワークであるAlchemyを提案する。
マドリブにおける各候補定理について、書き直しや適用に使用できるすべてのイベーシブルな定理を同定する。
その結果、マドリブの定理の数は110kから6Mへと桁違いに増加する。
論文 参考訳(メタデータ) (2024-10-21T08:04:21Z) - A Mirror Descent-Based Algorithm for Corruption-Tolerant Distributed Gradient Descent [57.64826450787237]
本研究では, 分散勾配降下アルゴリズムの挙動を, 敵対的腐敗の有無で解析する方法を示す。
汚職耐性の分散最適化アルゴリズムを設計するために、(怠慢な)ミラー降下からアイデアをどう使うかを示す。
MNISTデータセットの線形回帰、サポートベクトル分類、ソフトマックス分類に基づく実験は、我々の理論的知見を裏付けるものである。
論文 参考訳(メタデータ) (2024-07-19T08:29:12Z) - Generating Synthetic Ground Truth Distributions for Multi-step Trajectory Prediction using Probabilistic Composite Bézier Curves [4.837320865223374]
本稿では,合成確率的B'ezier曲線に基づく合成データセット生成手法を提案する。
本稿では, 生成した地中真実分布データを用いて, 模範的軌道予測モデルの評価を行う。
論文 参考訳(メタデータ) (2024-04-05T20:50:06Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
本論文では,乗算器の交互方向法に基づく分散サンプリング手法を提案する。
我々は,アルゴリズムの収束に関する理論的保証と,その最先端性に関する実験的証拠の両方を提供する。
シミュレーションでは,線形回帰タスクとロジスティック回帰タスクにアルゴリズムを配置し,その高速収束を既存の勾配法と比較した。
論文 参考訳(メタデータ) (2024-01-29T02:08:40Z) - Flow-based Distributionally Robust Optimization [23.232731771848883]
We present a framework, called $textttFlowDRO$, for solve flow-based distributionally robust optimization (DRO) problem with Wasserstein uncertainty set。
我々は、連続した最悪のケース分布(Last Favorable Distribution, LFD)とそれからのサンプルを見つけることを目指している。
本稿では、逆学習、分布論的に堅牢な仮説テスト、およびデータ駆動型分布摂動差分プライバシーの新しいメカニズムを実証する。
論文 参考訳(メタデータ) (2023-10-30T03:53:31Z) - Scalable Optimal Margin Distribution Machine [50.281535710689795]
ODM(Optimal margin Distribution Machine)は、新しいマージン理論に根ざした新しい統計学習フレームワークである。
本稿では,従来のODMトレーニング手法に比べて10倍近い高速化を実現するスケーラブルなODMを提案する。
論文 参考訳(メタデータ) (2023-05-08T16:34:04Z) - Generative Modeling via Hierarchical Tensor Sketching [12.005736675688917]
経験的分布を用いた高次元確率密度近似のための階層的テンソルネットワーク手法を提案する。
結果のアルゴリズムの複雑さは高次元密度の次元で線形にスケールする。
論文 参考訳(メタデータ) (2023-04-11T15:55:13Z) - Diffusion Models are Minimax Optimal Distribution Estimators [49.47503258639454]
拡散モデリングの近似と一般化能力について、初めて厳密な分析を行った。
実密度関数がベソフ空間に属し、経験値整合損失が適切に最小化されている場合、生成したデータ分布は、ほぼ最小の最適推定値が得られることを示す。
論文 参考訳(メタデータ) (2023-03-03T11:31:55Z) - Learning primal-dual sparse kernel machines [10.230121160034674]
伝統的に、カーネル法は、学習問題の解は再生されたカーネルヒルベルト空間(RKHS)にマッピングされたデータの線形結合として得られるという代表者定理に依存している。
本稿では,RKHS の要素が必ずしもトレーニングセットの要素に対応するとは限らない元データ空間において,前像分解を持つ解を求めることを提案する。
勾配に基づく手法は入力空間のスパース要素の最適化に重きを置き、原始空間と双対空間の両方でカーネルベースのモデルを得ることができる。
論文 参考訳(メタデータ) (2021-08-27T09:38:53Z) - Understanding Graph Neural Networks with Generalized Geometric
Scattering Transforms [67.88675386638043]
散乱変換は、畳み込みニューラルネットワークのモデルとして機能する多層ウェーブレットベースのディープラーニングアーキテクチャである。
非対称ウェーブレットの非常に一般的なクラスに基づくグラフに対して、窓付きおよび非窓付き幾何散乱変換を導入する。
これらの非対称グラフ散乱変換は、対称グラフ散乱変換と多くの理論的保証を持つことを示す。
論文 参考訳(メタデータ) (2019-11-14T17:23:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。