論文の概要: Wrapped Gaussian on the manifold of Symmetric Positive Definite Matrices
- arxiv url: http://arxiv.org/abs/2502.01512v2
- Date: Wed, 12 Feb 2025 18:11:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-13 13:46:30.792418
- Title: Wrapped Gaussian on the manifold of Symmetric Positive Definite Matrices
- Title(参考訳): 対称正定値行列多様体上のラップされたガウス多様体
- Authors: Thibault de Surrel, Fabien Lotte, Sylvain Chevallier, Florian Yger,
- Abstract要約: 円形および非平坦なデータ分布は、データ科学の様々な領域で広く使われている。
このようなデータの基盤となる幾何学を考慮に入れるための原則的なアプローチは、重要なものである。
この研究は、古典的な機械学習と統計手法をより複雑で構造化されたデータに拡張するための基礎となる。
- 参考スコア(独自算出の注目度): 6.7523635840772505
- License:
- Abstract: Circular and non-flat data distributions are prevalent across diverse domains of data science, yet their specific geometric structures often remain underutilized in machine learning frameworks. A principled approach to accounting for the underlying geometry of such data is pivotal, particularly when extending statistical models, like the pervasive Gaussian distribution. In this work, we tackle those issue by focusing on the manifold of symmetric positive definite matrices, a key focus in information geometry. We introduced a non-isotropic wrapped Gaussian by leveraging the exponential map, we derive theoretical properties of this distribution and propose a maximum likelihood framework for parameter estimation. Furthermore, we reinterpret established classifiers on SPD through a probabilistic lens and introduce new classifiers based on the wrapped Gaussian model. Experiments on synthetic and real-world datasets demonstrate the robustness and flexibility of this geometry-aware distribution, underscoring its potential to advance manifold-based data analysis. This work lays the groundwork for extending classical machine learning and statistical methods to more complex and structured data.
- Abstract(参考訳): 円形および非平坦なデータ分布は、データサイエンスの様々な領域で広く使われているが、その特定の幾何学構造は機械学習フレームワークでは使われていないことが多い。
このようなデータの基盤となる幾何学を説明するための原則的なアプローチは、特に広範に分布するガウス分布のような統計モデルを拡張する際に重要である。
本研究では、情報幾何学における重要な焦点である対称正定値行列の多様体に焦点をあてることにより、これらの問題に取り組む。
指数写像を利用して非等方的包含ガウス写像を導入し、この分布の理論的性質を導出し、パラメータ推定のための最大極度フレームワークを提案する。
さらに、確率レンズを用いてSPD上の確立された分類器を再解釈し、ラップされたガウスモデルに基づく新しい分類器を導入する。
合成および実世界のデータセットの実験は、この幾何認識分布の堅牢性と柔軟性を示し、多様体ベースのデータ解析を前進させる可能性を示している。
この研究は、古典的な機械学習と統計手法をより複雑で構造化されたデータに拡張するための基礎となる。
関連論文リスト
- Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
シミュレーションベース推論(SBI)は、入力パラメータを所定の観測に関連付ける後部分布を近似することができる。
本研究では、モデルのパラメータをより正確に推測するために、複数の観測値が利用できる、背の高いデータ拡張について考察する。
提案手法を,最近提案した各種数値実験の競合手法と比較し,数値安定性と計算コストの観点から,その優位性を実証した。
論文 参考訳(メタデータ) (2024-04-11T09:23:36Z) - Conformal inference for regression on Riemannian Manifolds [49.7719149179179]
回帰シナリオの予測セットは、応答変数が$Y$で、多様体に存在し、Xで表される共変数がユークリッド空間にあるときに検討する。
我々は、多様体上のこれらの領域の経験的バージョンが、その集団に対するほぼ確実に収束していることを証明する。
論文 参考訳(メタデータ) (2023-10-12T10:56:25Z) - Geometric Neural Diffusion Processes [55.891428654434634]
拡散モデルの枠組みを拡張して、無限次元モデリングに一連の幾何学的先行を組み込む。
これらの条件で、生成関数モデルが同じ対称性を持つことを示す。
論文 参考訳(メタデータ) (2023-07-11T16:51:38Z) - Towards a mathematical understanding of learning from few examples with
nonlinear feature maps [68.8204255655161]
トレーニングセットがわずか数個のデータポイントから構成されるデータ分類の問題を考える。
我々は、AIモデルの特徴空間の幾何学、基礎となるデータ分布の構造、モデルの一般化能力との間の重要な関係を明らかにする。
論文 参考訳(メタデータ) (2022-11-07T14:52:58Z) - Study of Manifold Geometry using Multiscale Non-Negative Kernel Graphs [32.40622753355266]
データの幾何学的構造を研究するための枠組みを提案する。
我々は最近導入された非負のカーネル回帰グラフを用いて、点密度、固有次元、およびデータ多様体(曲率)の線型性を推定する。
論文 参考訳(メタデータ) (2022-10-31T17:01:17Z) - Learning Graphical Factor Models with Riemannian Optimization [70.13748170371889]
本稿では,低ランク構造制約下でのグラフ学習のためのフレキシブルなアルゴリズムフレームワークを提案する。
この問題は楕円分布のペナルティ化された最大推定値として表される。
楕円モデルによく適合する正定行列と定ランクの正半定行列のジオメトリを利用する。
論文 参考訳(メタデータ) (2022-10-21T13:19:45Z) - Wrapped Distributions on homogeneous Riemannian manifolds [58.720142291102135]
パラメータ、対称性、モダリティなどの分布の性質の制御は、フレキシブルな分布の族を生み出す。
変動型オートエンコーダと潜在空間ネットワークモデル内で提案した分布を利用して,我々のアプローチを実証的に検証する。
論文 参考訳(メタデータ) (2022-04-20T21:25:21Z) - Probabilistic Learning Vector Quantization on Manifold of Symmetric
Positive Definite Matrices [3.727361969017079]
本研究では,確率論的学習ベクトル量子化の枠組みにおける多様体値データの新しい分類法を開発した。
本稿では,対称正定値行列の多様体上に存在するデータ点に対する確率論的学習ベクトル量子化アルゴリズムを一般化する。
合成データ,画像データ,運動画像脳波データに関する実証的研究は,提案手法の優れた性能を示す。
論文 参考訳(メタデータ) (2021-02-01T06:58:39Z) - Normal-bundle Bootstrap [2.741266294612776]
本稿では,与えられたデータセットの幾何学的構造を保持する新しいデータを生成する手法を提案する。
微分幾何学における多様体学習と概念のアルゴリズムにインスパイアされた本手法は,基礎となる確率測度を余分化測度に分解する。
本手法は, 密度リッジおよび関連統計量の推定に応用し, オーバーフィッティングを低減するためにデータ拡張を行う。
論文 参考訳(メタデータ) (2020-07-27T21:14:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。