論文の概要: A three layer neural network can represent any discontinuous
multivariate function
- arxiv url: http://arxiv.org/abs/2012.03016v1
- Date: Sat, 5 Dec 2020 12:11:09 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-22 12:10:04.276813
- Title: A three layer neural network can represent any discontinuous
multivariate function
- Title(参考訳): 3層ニューラルネットワークは不連続多変量関数を表現できる
- Authors: Vugar Ismailov
- Abstract要約: 1987年、Hecht-Nielsenは、任意の連続多変量関数が特定のタイプの3層ニューラルネットワークによって実装可能であることを示した。
本稿では、連続関数だけでなく、全ての不連続関数がそのようなニューラルネットワークによって実装可能であることを証明する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In 1987, Hecht-Nielsen showed that any continuous multivariate function could
be implemented by a certain type three-layer neural network. This result was
very much discussed in neural network literature. In this paper we prove that
not only continuous functions but also all discontinuous functions can be
implemented by such neural networks.
- Abstract(参考訳): 1987年、hecht-nielsenは、任意の連続多変量関数は、あるタイプの3層ニューラルネットワークによって実装できることを示した。
この結果はニューラルネットワークの文献でよく議論された。
本稿では、連続関数だけでなく、全ての不連続関数もそのようなニューラルネットワークによって実装できることを示す。
関連論文リスト
- Coding schemes in neural networks learning classification tasks [52.22978725954347]
完全接続型広義ニューラルネットワーク学習タスクについて検討する。
ネットワークが強力なデータ依存機能を取得することを示す。
驚くべきことに、内部表現の性質は神経の非線形性に大きく依存する。
論文 参考訳(メタデータ) (2024-06-24T14:50:05Z) - On the Kolmogorov neural networks [0.0]
本研究では, 連続的, 連続的, 連続的, 不連続的あるいは非連続的活性化関数を持つ2層ニューラルネットワークモデルにおいて, 連続的, 連続的, 不連続的, およびすべての非連続的多変量関数を正確に表現できることを示す。
論文 参考訳(メタデータ) (2023-10-31T18:01:58Z) - Going Beyond Neural Network Feature Similarity: The Network Feature
Complexity and Its Interpretation Using Category Theory [64.06519549649495]
機能的に等価な機能と呼ぶものの定義を提供します。
これらの特徴は特定の変換の下で等価な出力を生成する。
反復的特徴マージ(Iterative Feature Merging)というアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-10T16:27:12Z) - Provable Guarantees for Nonlinear Feature Learning in Three-Layer Neural
Networks [49.808194368781095]
3層ニューラルネットワークは,2層ネットワークよりも特徴学習能力が豊富であることを示す。
この研究は、特徴学習体制における2層ネットワーク上の3層ニューラルネットワークの証明可能なメリットを理解するための前進である。
論文 参考訳(メタデータ) (2023-05-11T17:19:30Z) - Points of non-linearity of functions generated by random neural networks [0.0]
1つの隠れ活性化層、任意の幅、ReLU活性化関数を持つニューラルネットワークによって出力される実数から実数への関数を考える。
非線型性の点の期待分布を計算する。
論文 参考訳(メタデータ) (2023-04-19T17:40:19Z) - Permutation Equivariant Neural Functionals [92.0667671999604]
この研究は、他のニューラルネットワークの重みや勾配を処理できるニューラルネットワークの設計を研究する。
隠れた層状ニューロンには固有の順序がないため, 深いフィードフォワードネットワークの重みに生じる置換対称性に着目する。
実験の結果, 置換同変ニューラル関数は多種多様なタスクに対して有効であることがわかった。
論文 参考訳(メタデータ) (2023-02-27T18:52:38Z) - Exploring the Approximation Capabilities of Multiplicative Neural
Networks for Smooth Functions [9.936974568429173]
対象関数のクラスは、一般化帯域制限関数とソボレフ型球である。
以上の結果から、乗法ニューラルネットワークは、これらの関数をはるかに少ない層とニューロンで近似できることを示した。
これらの結果は、乗法ゲートが標準フィードフォワード層より優れ、ニューラルネットワーク設計を改善する可能性があることを示唆している。
論文 参考訳(メタデータ) (2023-01-11T17:57:33Z) - Spiking neural network for nonlinear regression [68.8204255655161]
スパイクニューラルネットワークは、メモリとエネルギー消費を大幅に削減する可能性を持っている。
彼らは、次世代のニューロモルフィックハードウェアによって活用できる時間的および神経的疎結合を導入する。
スパイキングニューラルネットワークを用いた回帰フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-06T13:04:45Z) - Fourier Neural Networks for Function Approximation [2.840363325289377]
ニューラルネットワークが普遍近似器であることは広く証明されている。
特に、狭いニューラルネットワークが、ディープニューラルネットワークによって実装されている関数を近似するために、ネットワークは指数関数的に多数のニューロンを取ることが証明されている。
論文 参考訳(メタデータ) (2021-10-21T09:30:26Z) - The Connection Between Approximation, Depth Separation and Learnability
in Neural Networks [70.55686685872008]
学習可能性と近似能力の関係について検討する。
対象関数の深いネットワークでの学習性は、より単純なクラスがターゲットを近似する能力に依存することを示す。
論文 参考訳(メタデータ) (2021-01-31T11:32:30Z) - The Representation Power of Neural Networks: Breaking the Curse of
Dimensionality [0.0]
浅層および深層ニューラルネットワークの量に対する上限を証明します。
我々はさらに、これらの境界がコロボフ函数を近似するために必要となる連続関数近似器の最小パラメータ数にほぼ一致することを証明した。
論文 参考訳(メタデータ) (2020-12-10T04:44:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。