Fundamental Limitations within the Selected Cryptographic Scenarios and
Supra-Quantum Theories
- URL: http://arxiv.org/abs/2311.08211v1
- Date: Tue, 14 Nov 2023 14:48:57 GMT
- Title: Fundamental Limitations within the Selected Cryptographic Scenarios and
Supra-Quantum Theories
- Authors: Marek Winczewski
- Abstract summary: We study the fundamental limitations within the selected quantum and supra-quantum cryptographic scenarios.
We investigate various security paradigms, bipartite and multipartite settings.
We propose a novel type of rerouting attack on the quantum Internet.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The following submission constitutes a guide and an introduction to a
collection of articles submitted as a Ph.D. dissertation at the University of
Gda\'nsk. In the dissertation, we study the fundamental limitations within the
selected quantum and supra-quantum cryptographic scenarios in the form of upper
bounds on the achievable key rates. We investigate various security paradigms,
bipartite and multipartite settings, as well as single-shot and asymptotic
regimes. Our studies, however, extend beyond the derivations of the upper
bounds on the secret key rates in the mentioned scenarios. In particular, we
propose a novel type of rerouting attack on the quantum Internet for which we
find a countermeasure and benchmark its efficiency. Furthermore, we propose
several upper bounds on the performance of quantum (key) repeaters settings. We
derive a lower bound on the secret key agreement capacity of a quantum network,
which we tighten in an important case of a bidirectional quantum network. The
squashed nonlocality derived here as an upper bound on the secret key rate is a
novel non-faithful measure of nonlocality. Furthermore, the notion of the
non-signaling complete extension arising from the complete extension postulate
as a counterpart of purification of a quantum state allows us to study
analogies between non-signaling and quantum key distribution scenarios.
Related papers
- The multimode conditional quantum Entropy Power Inequality and the squashed entanglement of the extreme multimode bosonic Gaussian channels [53.253900735220796]
Inequality determines the minimum conditional von Neumann entropy of the output of the most general linear mixing of bosonic quantum modes.
Bosonic quantum systems constitute the mathematical model for the electromagnetic radiation in the quantum regime.
arXiv Detail & Related papers (2024-10-18T13:59:50Z) - Efficient Quantum Pseudorandomness from Hamiltonian Phase States [41.94295877935867]
We introduce a quantum hardness assumption called the Hamiltonian Phase State (HPS) problem.
We show that our assumption is plausibly fully quantum; meaning, it cannot be used to construct one-way functions.
We show that our assumption and its variants allow us to efficiently construct many pseudorandom quantum primitives.
arXiv Detail & Related papers (2024-10-10T16:10:10Z) - One-Shot Min-Entropy Calculation And Its Application To Quantum Cryptography [21.823963925581868]
We develop a one-shot lower bound calculation technique for the min-entropy of a classical-quantum state.
It gives an alternative tight finite-data analysis for the well-known BB84 quantum key distribution protocol.
It provides a security proof for a novel source-independent continuous-variable quantum random number generation protocol.
arXiv Detail & Related papers (2024-06-21T15:11:26Z) - Harnessing high-dimensional temporal entanglement using limited interferometric setups [41.94295877935867]
We develop the first complete analysis of high-dimensional entanglement in the polarization-time-domain.
We show how to efficiently certify relevant density matrix elements and security parameters for Quantum Key Distribution.
We propose a novel setup that can further enhance the noise resistance of free-space quantum communication.
arXiv Detail & Related papers (2023-08-08T17:44:43Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
arXiv Detail & Related papers (2022-03-15T09:46:45Z) - Entanglement catalysis for quantum states and noisy channels [41.94295877935867]
We investigate properties of entanglement and its role for quantum communication.
For transformations between bipartite pure states, we prove the existence of a universal catalyst.
We further develop methods to estimate the number of singlets which can be established via a noisy quantum channel.
arXiv Detail & Related papers (2022-02-10T18:36:25Z) - Deterministic Generation of Multipartite Entanglement via Causal
Activation in the Quantum Internet [7.219077740523682]
Entanglement represents textitthe'' key resource for several applications of quantum information processing.
We propose a novel generation scheme exhibiting two attractive features.
The only necessary condition is the possibility of coherently controlling -- according to the indefinite causal order framework -- the causal order among the unitaries acting on the qubits.
arXiv Detail & Related papers (2021-12-01T15:02:34Z) - Experimental quantum key distribution certified by Bell's theorem [0.0]
cryptographic key exchange protocols traditionally rely on computational conjectures to provide security against eavesdropping attacks.
quantum key distribution protocols provide information-theoretic security against such attacks.
However, quantum protocols are subject to a new class of attacks exploiting implementation defects in the physical devices involved.
We present here the experimental realisation of a complete quantum key distribution protocol immune to these vulnerabilities.
arXiv Detail & Related papers (2021-09-29T17:52:48Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - Quantum Sampling for Optimistic Finite Key Rates in High Dimensional
Quantum Cryptography [1.5469452301122175]
We revisit so-called sampling-based entropic uncertainty relations, deriving newer, more powerful, relations and applying them to source-independent quantum random number generators and high-dimensional quantum key distribution protocols.
These sampling-based approaches to entropic uncertainty, and their application to quantum cryptography, hold great potential for deriving proofs of security for quantum cryptographic systems.
arXiv Detail & Related papers (2020-12-08T01:32:59Z) - Tight finite-key analysis for generalized high-dimensional quantum key
distribution [23.578892457164933]
We propose a tight finite-key analysis suitable for generalized high-dimensional quantum key distribution protocols.
Benefitting from our theory, high-dimensional quantum key distribution protocols with finite resources become experimentally feasible.
arXiv Detail & Related papers (2020-08-08T12:33:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.