論文の概要: k-Factorization Subspace Clustering
- arxiv url: http://arxiv.org/abs/2012.04345v1
- Date: Tue, 8 Dec 2020 10:34:21 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-16 21:48:37.632041
- Title: k-Factorization Subspace Clustering
- Title(参考訳): k-Factorization Subspace Clustering
- Authors: Jicong Fan
- Abstract要約: サブスペースクラスタリングは、低次元部分空間の結合にあるデータをクラスタ化する。
本稿では,大規模サブスペースクラスタリングのためのk-Factorization Subspace Clustering (k-FSC) 法を提案する。
- 参考スコア(独自算出の注目度): 12.18340575383456
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Subspace clustering (SC) aims to cluster data lying in a union of
low-dimensional subspaces. Usually, SC learns an affinity matrix and then
performs spectral clustering. Both steps suffer from high time and space
complexity, which leads to difficulty in clustering large datasets. This paper
presents a method called k-Factorization Subspace Clustering (k-FSC) for
large-scale subspace clustering. K-FSC directly factorizes the data into k
groups via pursuing structured sparsity in the matrix factorization model.
Thus, k-FSC avoids learning affinity matrix and performing eigenvalue
decomposition, and hence has low time and space complexity on large datasets.
An efficient algorithm is proposed to solve the optimization of k-FSC. In
addition, k-FSC is able to handle noise, outliers, and missing data and
applicable to arbitrarily large datasets and streaming data. Extensive
experiments show that k-FSC outperforms state-of-the-art subspace clustering
methods.
- Abstract(参考訳): サブスペースクラスタリング(sc)は、低次元部分空間の結合にあるデータをクラスタ化する。
通常、SCは親和性行列を学習し、スペクトルクラスタリングを行う。
どちらのステップも時間と空間の複雑さに悩まされ、大規模なデータセットのクラスタリングが困難になる。
本稿では,大規模サブスペースクラスタリングのためのk-Factorization Subspace Clustering(k-FSC)を提案する。
K-FSCは、行列因数分解モデルにおいて構造的間隔を追求することで、データをk群に分解する。
したがって、k-FSCは学習親和性行列を避け、固有値分解を行うため、大規模なデータセット上での時間と空間の複雑さが低い。
k-fscの最適化を効率的に解くアルゴリズムを提案する。
さらに、k-FSCはノイズ、外れ値、欠落したデータを処理でき、任意の規模のデータセットやストリーミングデータに適用できる。
k-FSCは最先端のサブスペースクラスタリング法よりも優れていた。
関連論文リスト
- Self-Supervised Graph Embedding Clustering [70.36328717683297]
K-means 1-step dimensionality reduction clustering method は,クラスタリングタスクにおける次元性の呪いに対処する上で,いくつかの進歩をもたらした。
本稿では,K-meansに多様体学習を統合する統一フレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-24T08:59:51Z) - Datacube segmentation via Deep Spectral Clustering [76.48544221010424]
拡張ビジョン技術は、しばしばその解釈に挑戦する。
データ立方体スペクトルの巨大な次元性は、その統計的解釈において複雑なタスクを生じさせる。
本稿では,符号化空間における教師なしクラスタリング手法の適用の可能性について検討する。
統計的次元削減はアドホック訓練(可変)オートエンコーダで行い、クラスタリング処理は(学習可能な)反復K-Meansクラスタリングアルゴリズムで行う。
論文 参考訳(メタデータ) (2024-01-31T09:31:28Z) - Rethinking k-means from manifold learning perspective [122.38667613245151]
平均推定なしで直接データのクラスタを検出する新しいクラスタリングアルゴリズムを提案する。
具体的には,バタワースフィルタを用いてデータ点間の距離行列を構成する。
異なる視点に埋め込まれた相補的な情報をうまく活用するために、テンソルのSchatten p-norm正規化を利用する。
論文 参考訳(メタデータ) (2023-05-12T03:01:41Z) - Enhancing cluster analysis via topological manifold learning [0.3823356975862006]
クラスタ化前にデータセットのトポロジ構造を推定することで,クラスタ検出を大幅に向上させることができることを示す。
位相構造を推定するための多様体学習法UMAPと密度に基づくクラスタリング法DBSCANを組み合わせた。
論文 参考訳(メタデータ) (2022-07-01T15:53:39Z) - Fast and explainable clustering based on sorting [0.0]
我々はCLASSIXと呼ばれる高速で説明可能なクラスタリング手法を提案する。
このアルゴリズムは2つのスカラーパラメータ、すなわちアグリゲーションのための距離パラメータと、最小クラスタサイズを制御する別のパラメータによって制御される。
実験により, CLASSIXは最先端クラスタリングアルゴリズムと競合することを示した。
論文 参考訳(メタデータ) (2022-02-03T08:24:21Z) - Very Compact Clusters with Structural Regularization via Similarity and
Connectivity [3.779514860341336]
本稿では,汎用データセットのためのエンドツーエンドのディープクラスタリングアルゴリズムであるVery Compact Clusters (VCC)を提案する。
提案手法は,最先端のクラスタリング手法よりも優れたクラスタリング性能を実現する。
論文 参考訳(メタデータ) (2021-06-09T23:22:03Z) - Overcomplete Deep Subspace Clustering Networks [80.16644725886968]
4つのベンチマークデータセットの実験結果から,クラスタリング誤差の観点から,DSCや他のクラスタリング手法に対する提案手法の有効性が示された。
また,本手法は,最高の性能を得るために事前学習を中止する点にDSCほど依存せず,騒音にも頑健である。
論文 参考訳(メタデータ) (2020-11-16T22:07:18Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
既存のスケーラブルな階層的クラスタリング手法は、スピードの質を犠牲にする。
我々は、品質を犠牲にせず、数十億のデータポイントまでスケールする、スケーラブルで集約的な階層的クラスタリング法を提案する。
論文 参考訳(メタデータ) (2020-10-22T15:58:35Z) - Graph Convolutional Subspace Clustering: A Robust Subspace Clustering
Framework for Hyperspectral Image [6.332208511335129]
本稿では,HSIクラスタリングのための新しいサブスペースクラスタリングフレームワークであるGraph Convolutional Subspace Clustering (GCSC)を提案する。
具体的には、このフレームワークはデータの自己表現性を非ユークリッド領域に再キャストする。
従来のサブスペースクラスタリングモデルはユークリッドデータを用いたフレームワークの特別な形態であることを示す。
論文 参考訳(メタデータ) (2020-04-22T10:09:19Z) - Learnable Subspace Clustering [76.2352740039615]
本研究では,大規模サブスペースクラスタリング問題を効率的に解くために,学習可能なサブスペースクラスタリングパラダイムを開発する。
鍵となる考え方は、高次元部分空間を下層の低次元部分空間に分割するパラメトリック関数を学ぶことである。
我々の知る限り、本論文は、サブスペースクラスタリング手法の中で、数百万のデータポイントを効率的にクラスタ化する最初の試みである。
論文 参考訳(メタデータ) (2020-04-09T12:53:28Z) - Fast Kernel k-means Clustering Using Incomplete Cholesky Factorization [11.631064399465089]
カーネルベースのクラスタリングアルゴリズムは、データセット内の非線形構造を特定し、キャプチャすることができる。
線形クラスタリングよりも優れたパフォーマンスを実現することができる。
カーネルマトリックス全体の計算と保存は非常に大きなメモリを占有しているため、カーネルベースのクラスタリングが大規模なデータセットを扱うことは困難である。
論文 参考訳(メタデータ) (2020-02-07T15:32:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。