Cyber Autonomy: Automating the Hacker- Self-healing, self-adaptive,
automatic cyber defense systems and their impact to the industry, society and
national security
- URL: http://arxiv.org/abs/2012.04405v1
- Date: Tue, 8 Dec 2020 12:50:09 GMT
- Title: Cyber Autonomy: Automating the Hacker- Self-healing, self-adaptive,
automatic cyber defense systems and their impact to the industry, society and
national security
- Authors: Ryan K L Ko
- Abstract summary: This paper sets the context for the urgency for cyber autonomy, and the current gaps in the cyber security industry.
A novel framework proposing four phases of maturity for full cyber autonomy will be discussed.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper sets the context for the urgency for cyber autonomy, and the
current gaps of the cyber security industry. A novel framework proposing four
phases of maturity for full cyber autonomy will be discussed. The paper also
reviews new and emerging cyber security automation techniques and tools, and
discusses their impact on society, the perceived cyber security skills
gap/shortage and national security. We will also be discussing the delicate
balance between national security, human rights and ethics, and the potential
demise of the manual penetration testing industry in the face of automation.
Related papers
- Countering Autonomous Cyber Threats [40.00865970939829]
Foundation Models present dual-use concerns broadly and within the cyber domain specifically.
Recent research has shown the potential for these advanced models to inform or independently execute offensive cyberspace operations.
This work evaluates several state-of-the-art FMs on their ability to compromise machines in an isolated network and investigates defensive mechanisms to defeat such AI-powered attacks.
arXiv Detail & Related papers (2024-10-23T22:46:44Z) - The Shadow of Fraud: The Emerging Danger of AI-powered Social Engineering and its Possible Cure [30.431292911543103]
Social engineering (SE) attacks remain a significant threat to both individuals and organizations.
The advancement of Artificial Intelligence (AI) has potentially intensified these threats by enabling more personalized and convincing attacks.
This survey paper categorizes SE attack mechanisms, analyzes their evolution, and explores methods for measuring these threats.
arXiv Detail & Related papers (2024-07-22T17:37:31Z) - Navigating the road to automotive cybersecurity compliance [39.79758414095764]
The automotive industry is compelled to adopt robust cybersecurity measures to safeguard both vehicles and data against potential threats.
The future of automotive cybersecurity lies in the continuous development of advanced protective measures and collaborative efforts among all stakeholders.
arXiv Detail & Related papers (2024-06-29T16:07:48Z) - SEvenLLM: Benchmarking, Eliciting, and Enhancing Abilities of Large Language Models in Cyber Threat Intelligence [27.550484938124193]
This paper introduces a framework to benchmark, elicit, and improve cybersecurity incident analysis and response abilities.
We create a high-quality bilingual instruction corpus by crawling cybersecurity raw text from cybersecurity websites.
The instruction dataset SEvenLLM-Instruct is used to train cybersecurity LLMs with the multi-task learning objective.
arXiv Detail & Related papers (2024-05-06T13:17:43Z) - Cyber Sentinel: Exploring Conversational Agents in Streamlining Security Tasks with GPT-4 [0.08192907805418582]
This paper introduces Cyber Sentinel, an innovative task-oriented cybersecurity dialogue system.
It embodies the fusion of artificial intelligence, cybersecurity domain expertise, and real-time data analysis to combat the multifaceted challenges posed by cyber adversaries.
Our work is a novel approach to task-oriented dialogue systems, leveraging the power of chaining GPT-4 models combined with prompt engineering.
arXiv Detail & Related papers (2023-09-28T13:18:33Z) - Proceedings of the 2nd International Workshop on Adaptive Cyber Defense [0.0]
The 2nd International Workshop on Adaptive Cyber Defense was held at the Florida Institute of Technology, Florida.
This workshop was organized to share research that explores unique applications of Artificial Intelligence (AI) and Machine Learning (ML)
The cyber domain cannot currently be reliably and effectively defended without extensive reliance on human experts.
arXiv Detail & Related papers (2023-08-18T12:56:04Z) - Automated Cyber Defence: A Review [0.0]
Research within Automated Cyber Defence will allow the development and enabling intelligence response by autonomously defending networked systems through sequential decision-making agents.
This article comprehensively elaborates the developments within Automated Cyber Defence through a requirement analysis divided into two sub-areas, namely, automated defence and attack agents and Autonomous Cyber Operation (ACO) Gyms.
The requirement analysis is also used to critique ACO Gyms with an overall aim to develop them for deploying automated agents within real-world networked systems.
arXiv Detail & Related papers (2023-03-08T22:37:50Z) - AI Security Threats against Pervasive Robotic Systems: A Course for Next
Generation Cybersecurity Workforce [0.9137554315375919]
Robotics, automation, and related Artificial Intelligence (AI) systems have become pervasive bringing in concerns related to security, safety, accuracy, and trust.
The security of these systems is becoming increasingly important to prevent cyber-attacks that could lead to privacy invasion, critical operations sabotage, and bodily harm.
This course description includes details about seven self-contained and adaptive modules on "AI security threats against pervasive robotic systems"
arXiv Detail & Related papers (2023-02-15T21:21:20Z) - Defending against cybersecurity threats to the payments and banking
system [0.0]
The proliferation of cyber crimes is a huge concern for various stakeholders in the banking sector.
To prevent risks of cyber-attacks on software systems, entities operating within cyberspace must be identified.
This paper will examine various approaches that identify assets in cyberspace, classify the cyber threats, provide security defenses and map security measures to control types and functionalities.
arXiv Detail & Related papers (2022-12-15T11:55:11Z) - Proceedings of the Artificial Intelligence for Cyber Security (AICS)
Workshop at AAAI 2022 [55.573187938617636]
The workshop will focus on the application of AI to problems in cyber security.
Cyber systems generate large volumes of data, utilizing this effectively is beyond human capabilities.
arXiv Detail & Related papers (2022-02-28T18:27:41Z) - Adversarial Machine Learning Attacks and Defense Methods in the Cyber
Security Domain [58.30296637276011]
This paper summarizes the latest research on adversarial attacks against security solutions based on machine learning techniques.
It is the first to discuss the unique challenges of implementing end-to-end adversarial attacks in the cyber security domain.
arXiv Detail & Related papers (2020-07-05T18:22:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.