Navigating the road to automotive cybersecurity compliance
- URL: http://arxiv.org/abs/2407.00483v1
- Date: Sat, 29 Jun 2024 16:07:48 GMT
- Title: Navigating the road to automotive cybersecurity compliance
- Authors: Franco Oberti, Fabrizio Abrate, Alessandro Savino, Filippo Parisi, Stefano Di Carlo,
- Abstract summary: The automotive industry is compelled to adopt robust cybersecurity measures to safeguard both vehicles and data against potential threats.
The future of automotive cybersecurity lies in the continuous development of advanced protective measures and collaborative efforts among all stakeholders.
- Score: 39.79758414095764
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The automotive industry has evolved significantly since the introduction of the Ford Model T in 1908. Today's vehicles are not merely mechanical constructs; they are integral components of a complex digital ecosystem, equipped with advanced connectivity features powered by Artificial Intelligence and cloud computing technologies. This evolution has enhanced vehicle safety, efficiency, and the overall driving experience. However, it also introduces new challenges, notably in cybersecurity. With the increasing integration of digital technologies, vehicles have become more susceptible to cyber-attacks, prompting significant cybersecurity concerns. These concerns include securing sensitive data, protecting vehicles from unauthorized access, and ensuring user privacy. In response, the automotive industry is compelled to adopt robust cybersecurity measures to safeguard both vehicles and data against potential threats. Legislative frameworks such as UNR155 and UNR156 by the United Nations, along with other international regulations, aim to establish stringent cybersecurity mandates. These regulations require compliance with comprehensive cybersecurity management systems and necessitate regular updates and testing to cope with the evolving nature of cyber threats. The introduction of such regulations highlights the growing recognition of cybersecurity as a critical component of automotive safety and functionality. The future of automotive cybersecurity lies in the continuous development of advanced protective measures and collaborative efforts among all stakeholders, including manufacturers, policymakers, and cybersecurity professionals. Only through such concerted efforts can the industry hope to address the dual goals of innovation in vehicle functionality and stringent security measures against the backdrop of an increasingly interconnected digital landscape.
Related papers
- A dataset for cyber threat intelligence modeling of connected autonomous vehicles [17.58243748365034]
This paper reports the creation of a cyber threat intelligence corpus focusing on vehicle cybersecurity knowledge mining.
The proposed dataset will serve as a valuable resource for evaluating the performance of existing algorithms and advancing research in cyber threat intelligence modeling within the automotive field.
arXiv Detail & Related papers (2024-10-18T16:55:12Z) - Navigating Connected Car Cybersecurity: Location Anomaly Detection with RAN Data [2.147995542780459]
Cyber-attacks, including hijacking and spoofing, pose significant threats to connected cars.
This paper presents a novel approach for identifying potential attacks through Radio Access Network (RAN) event monitoring.
The major contribution of this paper is a location anomaly detection module that identifies devices that appear in multiple locations simultaneously.
arXiv Detail & Related papers (2024-07-02T22:42:45Z) - A Review on Blockchain Technologies for an Advanced and Cyber-Resilient Automotive Industry [0.0]
This review analyzes the great potential of applying blockchain technologies to the automotive industry emphasizing its cybersecurity features.
The broad adoption of blockchain unlocks a wide area of short- and medium-term promising automotive applications.
Some recommendations are enumerated with the aim of guiding researchers and companies in future cyber-resilient automotive industry developments.
arXiv Detail & Related papers (2024-02-01T19:23:19Z) - The Security and Privacy of Mobile Edge Computing: An Artificial Intelligence Perspective [64.36680481458868]
Mobile Edge Computing (MEC) is a new computing paradigm that enables cloud computing and information technology (IT) services to be delivered at the network's edge.
This paper provides a survey of security and privacy in MEC from the perspective of Artificial Intelligence (AI)
We focus on new security and privacy issues, as well as potential solutions from the viewpoints of AI.
arXiv Detail & Related papers (2024-01-03T07:47:22Z) - DynamiQS: Quantum Secure Authentication for Dynamic Charging of Electric Vehicles [61.394095512765304]
Dynamic Wireless Power Transfer (DWPT) is a novel technology that allows charging an electric vehicle while driving.
Recent advancements in quantum computing jeopardize classical public key cryptography.
We propose DynamiQS, the first post-quantum secure authentication protocol for dynamic wireless charging.
arXiv Detail & Related papers (2023-12-20T09:40:45Z) - When Authentication Is Not Enough: On the Security of Behavioral-Based Driver Authentication Systems [53.2306792009435]
We develop two lightweight driver authentication systems based on Random Forest and Recurrent Neural Network architectures.
We are the first to propose attacks against these systems by developing two novel evasion attacks, SMARTCAN and GANCAN.
Through our contributions, we aid practitioners in safely adopting these systems, help reduce car thefts, and enhance driver security.
arXiv Detail & Related papers (2023-06-09T14:33:26Z) - Graph Mining for Cybersecurity: A Survey [61.505995908021525]
The explosive growth of cyber attacks nowadays, such as malware, spam, and intrusions, caused severe consequences on society.
Traditional Machine Learning (ML) based methods are extensively used in detecting cyber threats, but they hardly model the correlations between real-world cyber entities.
With the proliferation of graph mining techniques, many researchers investigated these techniques for capturing correlations between cyber entities and achieving high performance.
arXiv Detail & Related papers (2023-04-02T08:43:03Z) - Reinforcement Learning based Cyberattack Model for Adaptive Traffic
Signal Controller in Connected Transportation Systems [61.39400591328625]
In a connected transportation system, adaptive traffic signal controllers (ATSC) utilize real-time vehicle trajectory data received from vehicles to regulate green time.
This wirelessly connected ATSC increases cyber-attack surfaces and increases their vulnerability to various cyber-attack modes.
One such mode is a'sybil' attack in which an attacker creates fake vehicles in the network.
An RL agent is trained to learn an optimal rate of sybil vehicle injection to create congestion for an approach(s)
arXiv Detail & Related papers (2022-10-31T20:12:17Z) - Roadmap for Cybersecurity in Autonomous Vehicles [3.577310844634503]
We discuss major automotive cyber-attacks over the past decade and present state-of-the-art solutions that leverage artificial intelligence (AI)
We propose a roadmap towards building secure autonomous vehicles and highlight key open challenges that need to be addressed.
arXiv Detail & Related papers (2022-01-19T16:42:18Z) - Smart and Secure CAV Networks Empowered by AI-Enabled Blockchain: Next
Frontier for Intelligent Safe-Driving Assessment [17.926728975133113]
Securing a safe-driving circumstance for connected and autonomous vehicles (CAVs) continues to be a widespread concern.
We propose a novel framework of algorithm-enabled intElligent Safe-driving assessmenT (BEST) to offer a smart and reliable approach.
arXiv Detail & Related papers (2021-04-09T19:08:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.