論文の概要: On the existence of the maximum likelihood estimate and convergence rate under gradient descent for multi-class logistic regression
- arxiv url: http://arxiv.org/abs/2012.04576v5
- Date: Wed, 8 May 2024 05:31:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-09 19:50:32.379617
- Title: On the existence of the maximum likelihood estimate and convergence rate under gradient descent for multi-class logistic regression
- Title(参考訳): 多クラスロジスティック回帰のための勾配勾配下における最大推定値と収束率の存在について
- Authors: Dwight Nwaigwe, Marek Rychlik,
- Abstract要約: サンプルデータセットの全てのクラスに正の確率を割り当てることによって、その存在を保証する方法が示される。
データの分離性の概念は必要ではなく、古典的なマルチクラスロジスティック回帰のセットアップとは対照的である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We revisit the problem of the existence of the maximum likelihood estimate for multi-class logistic regression. We show that one method of ensuring its existence is by assigning positive probability to every class in the sample dataset. The notion of data separability is not needed, which is in contrast to the classical set up of multi-class logistic regression in which each data sample belongs to one class. We also provide a general and constructive estimate of the convergence rate to the maximum likelihood estimate when gradient descent is used as the optimizer. Our estimate involves bounding the condition number of the Hessian of the maximum likelihood function. The approaches used in this article rely on a simple operator-theoretic framework.
- Abstract(参考訳): 多クラスロジスティック回帰の最大推定値が存在するという問題を再考する。
サンプルデータセットの全てのクラスに正の確率を割り当てることによって、その存在を保証する方法が示される。
データ分離性の概念は、各データサンプルが1つのクラスに属する、古典的な多クラスロジスティック回帰のセットアップとは対照的である。
また、勾配降下を最適化器として用いる場合、収束率を最大推定値に一般化し、構成的に推定する。
我々の推定は、最大極大関数のヘシアンの条件数の境界に関係している。
この記事では、単純な演算子理論のフレームワークに依存します。
関連論文リスト
- Finite-sample performance of the maximum likelihood estimator in logistic regression [3.7550827441501844]
本稿では,ロジスティック回帰に対する最大極大推定器(MLE)の予測性能について考察する。
我々は,MLEの存在と過剰なロジスティックリスクについて,急激な非漸近的保証を得る。
論文 参考訳(メタデータ) (2024-11-04T14:50:15Z) - High-dimensional logistic regression with missing data: Imputation, regularization, and universality [7.167672851569787]
我々は高次元リッジ規則化ロジスティック回帰について検討する。
予測誤差と推定誤差の両方を正確に評価する。
論文 参考訳(メタデータ) (2024-10-01T21:41:21Z) - A Provably Accurate Randomized Sampling Algorithm for Logistic Regression [2.7930955543692817]
本稿では,ロジスティック回帰問題に対する単純なランダム化サンプリングに基づくアルゴリズムを提案する。
正確な近似は、観測総数よりもはるかに小さい試料で達成できることを示す。
概して、ロジスティック回帰における推定確率を効率的に近似するためにランダム化サンプリング手法を用いる可能性に光を当てている。
論文 参考訳(メタデータ) (2024-02-26T06:20:28Z) - Bayesian Hierarchical Models for Counterfactual Estimation [12.159830463756341]
本稿では,多種多様なカウンターファクトの集合を推定する確率的パラダイムを提案する。
摂動を事前分布関数によるランダム変数として扱う。
収束特性の優れた勾配ベースサンプリング器は、後方サンプルを効率的に計算する。
論文 参考訳(メタデータ) (2023-01-21T00:21:11Z) - Kernel-based off-policy estimation without overlap: Instance optimality
beyond semiparametric efficiency [53.90687548731265]
本研究では,観測データに基づいて線形関数を推定するための最適手順について検討する。
任意の凸および対称函数クラス $mathcalF$ に対して、平均二乗誤差で有界な非漸近局所ミニマックスを導出する。
論文 参考訳(メタデータ) (2023-01-16T02:57:37Z) - Statistical Efficiency of Score Matching: The View from Isoperimetry [96.65637602827942]
本研究では, スコアマッチングの統計的効率と推定される分布の等尺性との間に, 密接な関係を示す。
これらの結果はサンプル状態と有限状態の両方で定式化する。
論文 参考訳(メタデータ) (2022-10-03T06:09:01Z) - Distributional Gradient Boosting Machines [77.34726150561087]
私たちのフレームワークはXGBoostとLightGBMをベースにしています。
我々は,このフレームワークが最先端の予測精度を実現することを示す。
論文 参考訳(メタデータ) (2022-04-02T06:32:19Z) - Continuously Generalized Ordinal Regression for Linear and Deep Models [41.03778663275373]
正規回帰は、クラスが順序を持ち、予測エラーが予測されたクラスが真のクラスからさらに大きくなるような分類タスクである。
本稿では,クラス固有の超平面斜面をモデル化するための新しい手法を提案する。
本手法は,順序回帰ベンチマークデータセットの完全セットに対して,標準順序ロジスティックモデルよりも大幅に優れる。
論文 参考訳(メタデータ) (2022-02-14T19:49:05Z) - Heavy-tailed Streaming Statistical Estimation [58.70341336199497]
ストリーミング$p$のサンプルから重み付き統計推定の課題を考察する。
そこで我々は,傾きの雑音に対して,よりニュアンスな条件下での傾きの傾きの低下を設計し,より詳細な解析を行う。
論文 参考訳(メタデータ) (2021-08-25T21:30:27Z) - Near-optimal inference in adaptive linear regression [60.08422051718195]
最小二乗法のような単純な方法でさえ、データが適応的に収集されるときの非正規な振る舞いを示すことができる。
我々は,これらの分布異常を少なくとも2乗推定で補正するオンラインデバイアス推定器のファミリーを提案する。
我々は,マルチアームバンディット,自己回帰時系列推定,探索による能動的学習などの応用を通して,我々の理論の有用性を実証する。
論文 参考訳(メタデータ) (2021-07-05T21:05:11Z) - Two-step penalised logistic regression for multi-omic data with an
application to cardiometabolic syndrome [62.997667081978825]
我々は,各層で変数選択を行うマルチオミックロジスティック回帰に対する2段階のアプローチを実装した。
私たちのアプローチは、可能な限り多くの関連する予測子を選択することを目標とすべきです。
提案手法により,分子レベルでの心筋メタボリックシンドロームの特徴を同定することができる。
論文 参考訳(メタデータ) (2020-08-01T10:36:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。