Graph Representation Learning for Interactive Biomolecule Systems
- URL: http://arxiv.org/abs/2304.02656v1
- Date: Wed, 5 Apr 2023 08:00:50 GMT
- Title: Graph Representation Learning for Interactive Biomolecule Systems
- Authors: Xinye Xiong, Bingxin Zhou, Yu Guang Wang
- Abstract summary: This paper presents a review of the methodologies used to represent biological molecules and systems as computer-recognizable objects.
It examines how geometric deep learning models, with an emphasis on graph-based techniques, can analyze biomolecule data to enable drug discovery, protein characterization, and biological system analysis.
- Score: 2.786956882821218
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Advances in deep learning models have revolutionized the study of biomolecule
systems and their mechanisms. Graph representation learning, in particular, is
important for accurately capturing the geometric information of biomolecules at
different levels. This paper presents a comprehensive review of the
methodologies used to represent biological molecules and systems as
computer-recognizable objects, such as sequences, graphs, and surfaces.
Moreover, it examines how geometric deep learning models, with an emphasis on
graph-based techniques, can analyze biomolecule data to enable drug discovery,
protein characterization, and biological system analysis. The study concludes
with an overview of the current state of the field, highlighting the challenges
that exist and the potential future research directions.
Related papers
- Graph Representation Learning Strategies for Omics Data: A Case Study on Parkinson's Disease [13.630617713928197]
Graph neural networks have emerged as promising alternatives to classical statistical and machine learning methods.
This study evaluates various graph representation learning models for case-control classification.
We compare topologies derived from sample similarity networks and molecular interaction networks, including protein-protein and metabolite-metabolite interactions.
arXiv Detail & Related papers (2024-06-20T16:06:39Z) - Ontology Embedding: A Survey of Methods, Applications and Resources [54.3453925775069]
Ontologies are widely used for representing domain knowledge and meta data.
One straightforward solution is to integrate statistical analysis and machine learning.
Numerous papers have been published on embedding, but a lack of systematic reviews hinders researchers from gaining a comprehensive understanding of this field.
arXiv Detail & Related papers (2024-06-16T14:49:19Z) - Leveraging Biomolecule and Natural Language through Multi-Modal
Learning: A Survey [75.47055414002571]
The integration of biomolecular modeling with natural language (BL) has emerged as a promising interdisciplinary area at the intersection of artificial intelligence, chemistry and biology.
We provide an analysis of recent advancements achieved through cross modeling of biomolecules and natural language.
arXiv Detail & Related papers (2024-03-03T14:59:47Z) - Tertiary Lymphoid Structures Generation through Graph-based Diffusion [54.37503714313661]
In this work, we leverage state-of-the-art graph-based diffusion models to generate biologically meaningful cell-graphs.
We show that the adopted graph diffusion model is able to accurately learn the distribution of cells in terms of their tertiary lymphoid structures (TLS) content.
arXiv Detail & Related papers (2023-10-10T14:37:17Z) - MolGrapher: Graph-based Visual Recognition of Chemical Structures [50.13749978547401]
We introduce MolGrapher to recognize chemical structures visually.
We treat all candidate atoms and bonds as nodes and put them in a graph.
We classify atom and bond nodes in the graph with a Graph Neural Network.
arXiv Detail & Related papers (2023-08-23T16:16:11Z) - Bi-level Contrastive Learning for Knowledge-Enhanced Molecule
Representations [55.42602325017405]
We propose a novel method called GODE, which takes into account the two-level structure of individual molecules.
By pre-training two graph neural networks (GNNs) on different graph structures, combined with contrastive learning, GODE fuses molecular structures with their corresponding knowledge graph substructures.
When fine-tuned across 11 chemical property tasks, our model outperforms existing benchmarks, registering an average ROC-AUC uplift of 13.8% for classification tasks and an average RMSE/MAE enhancement of 35.1% for regression tasks.
arXiv Detail & Related papers (2023-06-02T15:49:45Z) - Studying Limits of Explainability by Integrated Gradients for Gene
Expression Models [3.220287168504093]
We show that ranking features by importance is not enough to robustly identify biomarkers.
As it is difficult to evaluate whether biomarkers reflect relevant causes without known ground truth, we simulate gene expression data by proposing a hierarchical model.
arXiv Detail & Related papers (2023-03-19T19:54:15Z) - Transferring Chemical and Energetic Knowledge Between Molecular Systems
with Machine Learning [5.27145343046974]
We propose a novel methodology for transferring knowledge obtained from simple molecular systems to a more complex one.
We focus on the classification of high and low free-energy states.
Our results show a remarkable AUC of 0.92 for transfer learning from tri-alanine to the deca-alanine system.
arXiv Detail & Related papers (2022-05-06T16:21:00Z) - Self-Supervised Graph Representation Learning for Neuronal Morphologies [75.38832711445421]
We present GraphDINO, a data-driven approach to learn low-dimensional representations of 3D neuronal morphologies from unlabeled datasets.
We show, in two different species and across multiple brain areas, that this method yields morphological cell type clusterings on par with manual feature-based classification by experts.
Our method could potentially enable data-driven discovery of novel morphological features and cell types in large-scale datasets.
arXiv Detail & Related papers (2021-12-23T12:17:47Z) - Graph-Based Deep Learning for Medical Diagnosis and Analysis: Past,
Present and Future [36.58189530598098]
It has become critical to explore how machine learning and specifically deep learning methods can be exploited to analyse healthcare data.
A major limitation of existing methods has been the focus on grid-like data.
graph neural networks have attracted significant attention by exploiting implicit information that resides in a biological system.
arXiv Detail & Related papers (2021-05-27T13:32:45Z) - Utilising Graph Machine Learning within Drug Discovery and Development [19.21101749270075]
Graph Machine Learning (GML) is receiving growing interest within the pharmaceutical and biotechnology industries for its ability to model biomolecular structures.
Herein, we present a multidisciplinary academic-industrial review of the topic within the context of drug discovery and development.
After introducing key terms and modelling approaches, we move chronologically through the drug development pipeline to identify and summarise work incorporating: target identification, design of small molecules and biologics, and drug repurposing.
arXiv Detail & Related papers (2020-12-09T10:12:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.