論文の概要: Large Non-Stationary Noisy Covariance Matrices: A Cross-Validation
Approach
- arxiv url: http://arxiv.org/abs/2012.05757v1
- Date: Thu, 10 Dec 2020 15:41:17 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-15 06:31:08.488407
- Title: Large Non-Stationary Noisy Covariance Matrices: A Cross-Validation
Approach
- Title(参考訳): 大規模非定常雑音共分散行列:クロスバリデーションアプローチ
- Authors: Vincent W. C. Tan, Stefan Zohren
- Abstract要約: 金融時系列のヘテロシデスティックな性質を利用する新しい共分散推定器を提案する。
断面次元と時系列次元の両方のノイズを減衰させることにより、我々は、競合する推定器に対する推定器の優位性を実証的に実証する。
- 参考スコア(独自算出の注目度): 1.90365714903665
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a novel covariance estimator that exploits the heteroscedastic
nature of financial time series by employing exponential weighted moving
averages and shrinking the in-sample eigenvalues through cross-validation. Our
estimator is model-agnostic in that we make no assumptions on the distribution
of the random entries of the matrix or structure of the covariance matrix.
Additionally, we show how Random Matrix Theory can provide guidance for
automatic tuning of the hyperparameter which characterizes the time scale for
the dynamics of the estimator. By attenuating the noise from both the
cross-sectional and time-series dimensions, we empirically demonstrate the
superiority of our estimator over competing estimators that are based on
exponentially-weighted and uniformly-weighted covariance matrices.
- Abstract(参考訳): 指数重み付けされた移動平均を用いて、クロスバリデーションによりサンプル内固有値を縮小することにより、金融時系列の非定常性を利用する新しい共分散推定器を導入する。
私たちの推定器は、行列のランダムなエントリや共分散行列の構造の分布を仮定しないという点で、モデルに依存しない。
さらに,推定器の力学の時間スケールを特徴付けるハイパーパラメータの自動チューニングのガイダンスを,ランダム行列理論によってどのように提供できるかを示す。
断面次元と時系列次元の両方のノイズを減衰させることにより、指数重み付けと一様重み付けの共分散行列に基づく競合する推定器に対する推定器の優位性を実証的に証明する。
関連論文リスト
- Statistical Inference in Classification of High-dimensional Gaussian Mixture [1.2354076490479515]
高次元極限における正規化凸分類器の一般クラスの挙動について検討する。
我々の焦点は、推定器の一般化誤差と変数選択性である。
論文 参考訳(メタデータ) (2024-10-25T19:58:36Z) - Distributional Matrix Completion via Nearest Neighbors in the Wasserstein Space [8.971989179518216]
わずかに観察された経験的分布の行列を考えると、観測された行列と観測されていない行列の両方に関連する真の分布をインプットしようと試みる。
最適輸送のツールを用いて、最も近い隣人法を分布設定に一般化する。
論文 参考訳(メタデータ) (2024-10-17T00:50:17Z) - A Geometric Unification of Distributionally Robust Covariance Estimators: Shrinking the Spectrum by Inflating the Ambiguity Set [20.166217494056916]
制約的な仮定を課さずに共分散推定器を構築するための原理的手法を提案する。
頑健な推定器は効率的に計算可能で一貫したものであることを示す。
合成および実データに基づく数値実験により、我々の頑健な推定器は最先端の推定器と競合していることが示された。
論文 参考訳(メタデータ) (2024-05-30T15:01:18Z) - Intrinsic Bayesian Cramér-Rao Bound with an Application to Covariance Matrix Estimation [49.67011673289242]
本稿では, 推定パラメータが滑らかな多様体内にある推定問題に対して, 新たな性能境界を提案する。
これはパラメータ多様体の幾何学と推定誤差測度の本質的な概念を誘導する。
論文 参考訳(メタデータ) (2023-11-08T15:17:13Z) - Regularized Vector Quantization for Tokenized Image Synthesis [126.96880843754066]
画像の離散表現への量子化は、統合生成モデリングにおける根本的な問題である。
決定論的量子化は、厳しいコードブックの崩壊と推論段階の誤調整に悩まされ、一方、量子化は、コードブックの利用率の低下と再構築の目的に悩まされる。
本稿では、2つの視点から正規化を適用することにより、上記の問題を効果的に緩和できる正規化ベクトル量子化フレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-11T15:20:54Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
時間変化量の推定は、医療や金融などの分野における意思決定の基本的な構成要素である。
本稿では,アテンションベースデコーダを用いて関節分布を推定する多元的手法を提案する。
本研究では,本モデルが実世界の複数のデータセットに対して最先端の予測を生成することを示す。
論文 参考訳(メタデータ) (2022-02-07T21:37:29Z) - The Connection between Discrete- and Continuous-Time Descriptions of
Gaussian Continuous Processes [60.35125735474386]
我々は、一貫した推定子をもたらす離散化が粗粒化下での不変性を持つことを示す。
この結果は、導関数再構成のための微分スキームと局所時間推論アプローチの組み合わせが、2次または高次微分方程式の時系列解析に役立たない理由を説明する。
論文 参考訳(メタデータ) (2021-01-16T17:11:02Z) - Understanding Implicit Regularization in Over-Parameterized Single Index
Model [55.41685740015095]
我々は高次元単一インデックスモデルのための正規化自由アルゴリズムを設計する。
暗黙正則化現象の理論的保証を提供する。
論文 参考訳(メタデータ) (2020-07-16T13:27:47Z) - Asymptotic Analysis of an Ensemble of Randomly Projected Linear
Discriminants [94.46276668068327]
[1]では、ランダムに投影された線形判別式のアンサンブルを用いてデータセットを分類する。
我々は,計算コストのかかるクロスバリデーション推定器の代替として,誤分類確率の一貫した推定器を開発する。
また、実データと合成データの両方で投影次元を調整するための推定器の使用を実証する。
論文 参考訳(メタデータ) (2020-04-17T12:47:04Z) - Covariance Estimation for Matrix-valued Data [9.739753590548796]
本研究では,高次元行列データに対する分布自由正規化共分散推定法を提案する。
我々は、バンド可能な共分散を推定するための統一的な枠組みを定式化し、ランク1の制約のないクロネッカー積近似に基づく効率的なアルゴリズムを導入する。
格子状温度異常データセットとS&P 500ストックデータ解析によるシミュレーションと実応用を用いて,本手法の優れた有限サンプル性能を実証した。
論文 参考訳(メタデータ) (2020-04-11T02:15:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。