論文の概要: Saving superconducting quantum processors from qubit decay and
correlated errors generated by gamma and cosmic rays
- arxiv url: http://arxiv.org/abs/2012.06137v3
- Date: Tue, 6 Apr 2021 02:06:26 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-21 03:35:45.753753
- Title: Saving superconducting quantum processors from qubit decay and
correlated errors generated by gamma and cosmic rays
- Title(参考訳): 量子ビット崩壊とガンマ線と宇宙線による相関誤差による超伝導量子プロセッサの保存
- Authors: John M. Martinis
- Abstract要約: 誤り訂正量子コンピュータは、誤差が小さく、相関がない場合にのみ機能する。
フォノンを電子/準粒子ダウンコンバージョン物理学にモデル化することで、宇宙線や背景線が超伝導量子ビットにどのように影響するかを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Error-corrected quantum computers can only work if errors are small and
uncorrelated. Here I show how cosmic rays or stray background radiation affects
superconducting qubits by modeling the phonon to electron/quasiparticle
down-conversion physics. For present designs, the model predicts about 57\% of
the radiation energy breaks Cooper pairs into quasiparticles, which then
vigorously suppress the qubit energy relaxation time ($T_1 \sim$ 160 ns) over a
large area (cm) and for a long time (ms). Such large and correlated decay kills
error correction. Using this quantitative model, I show how this energy can be
channeled away from the qubit so that this error mechanism can be reduced by
many orders of magnitude. I also comment on how this affects other solid-state
qubits.
- Abstract(参考訳): 誤り訂正量子コンピュータは、誤差が小さく相関しない場合にのみ機能する。
ここで、宇宙線や成層放射線が超伝導量子ビットにどのように影響するかを示し、フォノンを電子/準粒子ダウンコンバージョン物理学にモデル化する。
このモデルでは、放射エネルギーの約57\%がクーパー対を準粒子に分解し、大面積 (cm) および長時間 (ms) にわたって量子ビットエネルギー緩和時間 (t_1 \sim$ 160 ns) を活発に抑制する。
このような大きく相関した崩壊は誤り訂正をなくす。
この定量的モデルを用いて、このエネルギーが量子ビットからどのように引き離されるかを示し、この誤差機構を何桁も減らすことができることを示した。
また、これが他のソリッドステートキュービットに与える影響についてもコメントします。
関連論文リスト
- Coherence Preserving Leakage Detection and Cooling in Alkaline Earth Atoms [0.0]
アルカリ土類状原子の核スピンに量子情報を符号化することで量子非破壊(QND)プロセスを可能にする。
これらの進歩は、フォールトトレラント量子計算における中性原子の展望を大幅に改善する可能性がある。
論文 参考訳(メタデータ) (2024-10-30T20:17:19Z) - Direct evidence for cosmic-ray-induced correlated errors in
superconducting qubit array [27.326956775973564]
関連するエラーは、量子エラー補正に大きな影響を及ぼす可能性がある。
超伝導量子ビットは複数の量子ビットで相関する誤差を負っていることが判明した。
論文 参考訳(メタデータ) (2024-02-06T18:52:57Z) - Synchronous Detection of Cosmic Rays and Correlated Errors in
Superconducting Qubit Arrays [1.8106057803005216]
超伝導チップにおける相関量子ビット誤差に対する宇宙線寄与の測定を行った。
その結果、ロバストな量子誤差補正の実現に向けた放射線硬化の重要性が示唆された。
論文 参考訳(メタデータ) (2024-02-05T17:18:40Z) - Model-based Optimization of Superconducting Qubit Readout [59.992881941624965]
超伝導量子ビットに対するモデルベース読み出し最適化を実証する。
我々は,残共振器光子から500nsの終端長と最小限の過剰リセット誤差で,キュービット当たり1.5%の誤差を観測した。
この技術は数百のキュービットに拡張でき、エラー訂正コードや短期アプリケーションの性能を高めるために使用される。
論文 参考訳(メタデータ) (2023-08-03T23:30:56Z) - Bound state of distant photons in waveguide quantum electrodynamics [137.6408511310322]
遠い粒子間の量子相関は、量子力学の誕生以来謎のままである。
箱の中の2つの相互作用する粒子の最も単純な1次元のセットアップにおいて、新しい種類の有界量子状態を予測する。
このような状態は導波路量子電磁力学プラットフォームで実現できる。
論文 参考訳(メタデータ) (2023-03-17T09:27:02Z) - CubeSat in-orbit validation of in-situ performance by high fidelity
radiation modelling [55.41644538483948]
SpooQy-1 CubeSatミッションは、単一光子検出のためのアバランシェフォトダイオードを用いた偏光に基づく量子エンタングルメント相関を実証した。
2年間にわたって観測された2つのシリコン・ガイガーモード・アバランシェ・フォトダイオードの暗黒数率の増加を報告した。
我々は,光ダイオードに蓄積した変位損傷量を推定するために,高忠実度放射モデルと3次元コンピュータ支援型SpooQy-1 CubeSatの設計モデルを実装した。
論文 参考訳(メタデータ) (2022-09-01T12:33:27Z) - QuFI: a Quantum Fault Injector to Measure the Reliability of Qubits and
Quantum Circuits [0.9322743017642274]
本稿では, 放射誘起断層に対する量子回路の感度と, 量子ビット内の断層が出力に伝播する確率を同定する枠組みを提案する。
本フレームワークは, 複数個のクォービット欠陥を注入し, クォービットと粒子衝突位置との近接度に基づいて, 位相シフトの程度を調整できる。
我々は,Qiskitシミュレータ上での285万回以上のインジェクションと,実際のIBMマシン上での53Kインジェクションの発見を報告する。
論文 参考訳(メタデータ) (2022-03-14T15:23:29Z) - Experimental observation of thermalization with noncommuting charges [53.122045119395594]
非可換電荷は、量子熱力学と量子情報の交差する部分場として現れる。
我々はレーザー誘起エンタングリング相互作用と集合スピン回転を用いてハイゼンベルクの進化をシミュレートする。
我々は、最近予測された非アベリア熱状態に近い小さなサブシステムが平衡していることを発見した。
論文 参考訳(メタデータ) (2022-02-09T19:00:00Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
我々は中性原子量子コンピュータにおいてエラー源の完全な特徴付けを行う。
計算部分空間外の状態への原子量子ビットの崩壊に伴う最も重要なエラーに対処する,新しい,明らかに効率的な手法を開発した。
我々のプロトコルは、アルカリ原子とアルカリ原子の両方にエンコードされた量子ビットを持つ最先端の中性原子プラットフォームを用いて、近い将来に実装できる。
論文 参考訳(メタデータ) (2021-05-27T23:29:53Z) - Resolving catastrophic error bursts from cosmic rays in large arrays of
superconducting qubits [32.35159827482467]
高エネルギー放射線は、パイロット超伝導量子デバイスにおけるエラーの原因として特定されている。
ここでは、大規模量子プロセッサに影響を及ぼす高エネルギー光を観察する。
我々は、全ての量子ビットのエネルギーコヒーレンスを同時にかつ著しく制限し、チップ全体の故障を引き起こすような、大きな準粒子のバーストを同定する。
論文 参考訳(メタデータ) (2021-04-12T06:03:23Z) - Exponential suppression of bit or phase flip errors with repetitive
error correction [56.362599585843085]
最先端の量子プラットフォームは通常、物理的エラーレートが10~3ドル近くである。
量子誤り訂正(QEC)は、多くの物理量子ビットに量子論理情報を分散することで、この分割を橋渡しすることを約束する。
超伝導量子ビットの2次元格子に埋め込まれた1次元繰り返し符号を実装し、ビットまたは位相フリップ誤差の指数的抑制を示す。
論文 参考訳(メタデータ) (2021-02-11T17:11:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。