Structured Policy Representation: Imposing Stability in arbitrarily
conditioned dynamic systems
- URL: http://arxiv.org/abs/2012.06224v1
- Date: Fri, 11 Dec 2020 10:11:32 GMT
- Title: Structured Policy Representation: Imposing Stability in arbitrarily
conditioned dynamic systems
- Authors: Julen Urain, Davide Tateo, Tianyu Ren, Jan Peters
- Abstract summary: We present a new family of deep neural network-based dynamic systems.
The presented dynamics are globally stable and can be conditioned with an arbitrary context state.
We show how these dynamics can be used as structured robot policies.
- Score: 24.11609722217645
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a new family of deep neural network-based dynamic systems. The
presented dynamics are globally stable and can be conditioned with an arbitrary
context state. We show how these dynamics can be used as structured robot
policies. Global stability is one of the most important and straightforward
inductive biases as it allows us to impose reasonable behaviors outside the
region of the demonstrations.
Related papers
- Learning Deep Dissipative Dynamics [5.862431328401459]
Dissipativity is a crucial indicator for dynamical systems that generalizes stability and input-output stability.
We propose a differentiable projection that transforms any dynamics represented by neural networks into dissipative ones.
Our method strictly guarantees stability, input-output stability, and energy conservation of trained dynamical systems.
arXiv Detail & Related papers (2024-08-21T09:44:43Z) - Stability-Certified Learning of Control Systems with Quadratic
Nonlinearities [9.599029891108229]
This work primarily focuses on an operator inference methodology aimed at constructing low-dimensional dynamical models.
Our main objective is to develop a method that facilitates the inference of quadratic control dynamical systems with inherent stability guarantees.
arXiv Detail & Related papers (2024-03-01T16:26:47Z) - Neural Contractive Dynamical Systems [13.046426079291376]
Stability guarantees are crucial when ensuring a fully autonomous robot does not take undesirable or potentially harmful actions.
We propose a novel methodology to learn neural contractive dynamical systems, where our neural architecture ensures contraction.
We show that our approach encodes the desired dynamics more accurately than the current state-of-the-art, which provides less strong stability guarantees.
arXiv Detail & Related papers (2024-01-17T17:18:21Z) - End-to-End Stable Imitation Learning via Autonomous Neural Dynamic
Policies [2.7941001040182765]
State-of-the-art sensorimotor learning algorithms offer policies that can often produce unstable behaviors.
Traditional robot learning relies on dynamical system-based policies that can be analyzed for stability/safety.
In this work, we bridge the gap between generic neural network policies and dynamical system-based policies.
arXiv Detail & Related papers (2023-05-22T10:10:23Z) - Isolating and Leveraging Controllable and Noncontrollable Visual
Dynamics in World Models [65.97707691164558]
We present Iso-Dream, which improves the Dream-to-Control framework in two aspects.
First, by optimizing inverse dynamics, we encourage world model to learn controllable and noncontrollable sources.
Second, we optimize the behavior of the agent on the decoupled latent imaginations of the world model.
arXiv Detail & Related papers (2022-05-27T08:07:39Z) - Hierarchical Neural Dynamic Policies [50.969565411919376]
We tackle the problem of generalization to unseen configurations for dynamic tasks in the real world while learning from high-dimensional image input.
We use hierarchical deep policy learning framework called Hierarchical Neural Dynamical Policies (H-NDPs)
H-NDPs form a curriculum by learning local dynamical system-based policies on small regions in state-space.
We show that H-NDPs are easily integrated with both imitation as well as reinforcement learning setups and achieve state-of-the-art results.
arXiv Detail & Related papers (2021-07-12T17:59:58Z) - Neural Dynamic Policies for End-to-End Sensorimotor Learning [51.24542903398335]
The current dominant paradigm in sensorimotor control, whether imitation or reinforcement learning, is to train policies directly in raw action spaces.
We propose Neural Dynamic Policies (NDPs) that make predictions in trajectory distribution space.
NDPs outperform the prior state-of-the-art in terms of either efficiency or performance across several robotic control tasks.
arXiv Detail & Related papers (2020-12-04T18:59:32Z) - Euclideanizing Flows: Diffeomorphic Reduction for Learning Stable
Dynamical Systems [74.80320120264459]
We present an approach to learn such motions from a limited number of human demonstrations.
The complex motions are encoded as rollouts of a stable dynamical system.
The efficacy of this approach is demonstrated through validation on an established benchmark as well demonstrations collected on a real-world robotic system.
arXiv Detail & Related papers (2020-05-27T03:51:57Z) - Context-aware Dynamics Model for Generalization in Model-Based
Reinforcement Learning [124.9856253431878]
We decompose the task of learning a global dynamics model into two stages: (a) learning a context latent vector that captures the local dynamics, then (b) predicting the next state conditioned on it.
In order to encode dynamics-specific information into the context latent vector, we introduce a novel loss function that encourages the context latent vector to be useful for predicting both forward and backward dynamics.
The proposed method achieves superior generalization ability across various simulated robotics and control tasks, compared to existing RL schemes.
arXiv Detail & Related papers (2020-05-14T08:10:54Z) - Learning Stable Deep Dynamics Models [91.90131512825504]
We propose an approach for learning dynamical systems that are guaranteed to be stable over the entire state space.
We show that such learning systems are able to model simple dynamical systems and can be combined with additional deep generative models to learn complex dynamics.
arXiv Detail & Related papers (2020-01-17T00:04:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.