Learning Deep Dissipative Dynamics
- URL: http://arxiv.org/abs/2408.11479v1
- Date: Wed, 21 Aug 2024 09:44:43 GMT
- Title: Learning Deep Dissipative Dynamics
- Authors: Yuji Okamoto, Ryosuke Kojima,
- Abstract summary: Dissipativity is a crucial indicator for dynamical systems that generalizes stability and input-output stability.
We propose a differentiable projection that transforms any dynamics represented by neural networks into dissipative ones.
Our method strictly guarantees stability, input-output stability, and energy conservation of trained dynamical systems.
- Score: 5.862431328401459
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study challenges strictly guaranteeing ``dissipativity'' of a dynamical system represented by neural networks learned from given time-series data. Dissipativity is a crucial indicator for dynamical systems that generalizes stability and input-output stability, known to be valid across various systems including robotics, biological systems, and molecular dynamics. By analytically proving the general solution to the nonlinear Kalman-Yakubovich-Popov (KYP) lemma, which is the necessary and sufficient condition for dissipativity, we propose a differentiable projection that transforms any dynamics represented by neural networks into dissipative ones and a learning method for the transformed dynamics. Utilizing the generality of dissipativity, our method strictly guarantee stability, input-output stability, and energy conservation of trained dynamical systems. Finally, we demonstrate the robustness of our method against out-of-domain input through applications to robotic arms and fluid dynamics. Code here https://github.com/kojima-r/DeepDissipativeModel
Related papers
- Learning System Dynamics without Forgetting [60.08612207170659]
Predicting trajectories of systems with unknown dynamics is crucial in various research fields, including physics and biology.
We present a novel framework of Mode-switching Graph ODE (MS-GODE), which can continually learn varying dynamics.
We construct a novel benchmark of biological dynamic systems, featuring diverse systems with disparate dynamics.
arXiv Detail & Related papers (2024-06-30T14:55:18Z) - Neural Contractive Dynamical Systems [13.046426079291376]
Stability guarantees are crucial when ensuring a fully autonomous robot does not take undesirable or potentially harmful actions.
We propose a novel methodology to learn neural contractive dynamical systems, where our neural architecture ensures contraction.
We show that our approach encodes the desired dynamics more accurately than the current state-of-the-art, which provides less strong stability guarantees.
arXiv Detail & Related papers (2024-01-17T17:18:21Z) - Data-Driven Control with Inherent Lyapunov Stability [3.695480271934742]
We propose Control with Inherent Lyapunov Stability (CoILS) as a method for jointly learning parametric representations of a nonlinear dynamics model and a stabilizing controller from data.
In addition to the stabilizability of the learned dynamics guaranteed by our novel construction, we show that the learned controller stabilizes the true dynamics under certain assumptions on the fidelity of the learned dynamics.
arXiv Detail & Related papers (2023-03-06T14:21:42Z) - On Robust Numerical Solver for ODE via Self-Attention Mechanism [82.95493796476767]
We explore training efficient and robust AI-enhanced numerical solvers with a small data size by mitigating intrinsic noise disturbances.
We first analyze the ability of the self-attention mechanism to regulate noise in supervised learning and then propose a simple-yet-effective numerical solver, Attr, which introduces an additive self-attention mechanism to the numerical solution of differential equations.
arXiv Detail & Related papers (2023-02-05T01:39:21Z) - Learning Deep Input-Output Stable Dynamics [2.055949720959582]
We propose a method to learn nonlinear systems guaranteeing the input-output stability.
Our proposed method utilizes the differentiable projection onto the space satisfying the Hamilton-Jacobi inequality.
Results show that the nonlinear system with neural networks by our method achieves the input-output stability, unlike naive neural networks.
arXiv Detail & Related papers (2022-06-27T07:54:34Z) - Learning effective dynamics from data-driven stochastic systems [2.4578723416255754]
This work is devoted to investigating the effective dynamics for slow-fast dynamical systems.
We propose a novel algorithm including a neural network called Auto-SDE to learn in slow manifold.
arXiv Detail & Related papers (2022-05-09T09:56:58Z) - Learning Stabilizable Deep Dynamics Models [1.75320459412718]
We propose a new method for learning the dynamics of input-affine control systems.
An important feature is that a stabilizing controller and control Lyapunov function of the learned model are obtained as well.
The proposed method can also be applied to solving Hamilton-Jacobi inequalities.
arXiv Detail & Related papers (2022-03-18T03:09:24Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
Data-driven modeling is an alternative paradigm that seeks to learn an approximation of the dynamics of a system using observations of the true system.
This paper provides a survey of the different ways to construct models of dynamical systems using neural networks.
In addition to the basic overview, we review the related literature and outline the most significant challenges from numerical simulations that this modeling paradigm must overcome.
arXiv Detail & Related papers (2021-11-02T10:51:42Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
Modern dynamical systems are becoming increasingly non-linear and complex.
There is a need for a framework to model these systems in a compact and comprehensive representation for prediction and control.
Our approach learns these basis functions using a supervised learning approach.
arXiv Detail & Related papers (2021-09-06T04:39:06Z) - Learning Stable Deep Dynamics Models [91.90131512825504]
We propose an approach for learning dynamical systems that are guaranteed to be stable over the entire state space.
We show that such learning systems are able to model simple dynamical systems and can be combined with additional deep generative models to learn complex dynamics.
arXiv Detail & Related papers (2020-01-17T00:04:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.