論文の概要: Physics-Informed Machine Learning Simulator for Wildfire Propagation
- arxiv url: http://arxiv.org/abs/2012.06825v1
- Date: Sat, 12 Dec 2020 14:13:26 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-10 07:25:17.931527
- Title: Physics-Informed Machine Learning Simulator for Wildfire Propagation
- Title(参考訳): 自然火災伝播のための物理インフォームド機械学習シミュレータ
- Authors: Luca Bottero, Francesco Calisto, Giovanni Graziano, Valerio
Pagliarino, Martina Scauda, Sara Tiengo and Simone Azeglio
- Abstract要約: この研究は、広く使用されている気象研究と予測WRF-SFIREシミュレーターのいくつかの重要な部分を再実装する可能性を評価することである。
主なプログラミング言語はJuliaである。Juliaはインタプリタ言語よりも優れたパーファマンスを提供するコンパイル言語である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The aim of this work is to evaluate the feasibility of re-implementing some
key parts of the widely used Weather Research and Forecasting WRF-SFIRE
simulator by replacing its core differential equations numerical solvers with
state-of-the-art physics-informed machine learning techniques to solve ODEs and
PDEs, in order to transform it into a real-time simulator for wildfire spread
prediction. The main programming language used is Julia, a compiled language
which offers better perfomance than interpreted ones, providing Just in Time
(JIT) compilation with different optimization levels. Moreover, Julia is
particularly well suited for numerical computation and for the solution of
complex physical models, both considering the syntax and the presence of some
specific libraries such as DifferentialEquations.jl and ModellingToolkit.jl.
- Abstract(参考訳): 本研究の目的は,広範に使用されている気象研究・予測WRF-SFIREシミュレータのいくつかの重要な部分を再実装し,数値微分方程式を最先端物理インフォームド機械学習技術に置き換えてODEやPDEを解き、山火事拡散予測のためのリアルタイムシミュレータに変換する可能性を評価することである。
Juliaはコンパイルされた言語で、解釈された言語よりも優れたパーファマンスを提供し、最適化レベルが異なるJust in Time(JIT)コンパイルを提供する。
さらに、Juliaは数値計算や複雑な物理モデルの解法に特に適しており、構文やdifferialEquations.jlやModellingToolkit.jlのような特定のライブラリの存在も考慮している。
関連論文リスト
- Physics-informed MeshGraphNets (PI-MGNs): Neural finite element solvers
for non-stationary and nonlinear simulations on arbitrary meshes [13.41003911618347]
PI-MGNは、PINNとMGNを組み合わせて任意のメッシュ上の非定常および非線形偏微分方程式(PDE)を解くハイブリッドアプローチである。
結果は、モデルが大規模で複雑なメッシュにうまくスケールしていることを示しているが、小さなジェネリックメッシュでのみトレーニングされている。
論文 参考訳(メタデータ) (2024-02-16T13:34:51Z) - PICL: Physics Informed Contrastive Learning for Partial Differential Equations [7.136205674624813]
我々は,複数の支配方程式にまたがるニューラル演算子一般化を同時に改善する,新しいコントラスト事前学習フレームワークを開発する。
物理インフォームドシステムの進化と潜在空間モデル出力の組み合わせは、入力データに固定され、我々の距離関数で使用される。
物理インフォームドコントラストプレトレーニングにより,1次元および2次元熱,バーガーズ,線形対流方程式に対する固定フューチャーおよび自己回帰ロールアウトタスクにおけるフーリエニューラル演算子の精度が向上することがわかった。
論文 参考訳(メタデータ) (2024-01-29T17:32:22Z) - ML-driven Hardware Cost Model for MLIR [1.2987894327817158]
高レベルMLIRのための機械学習に基づくコストモデルを開発した。
MLIRをラ・NLPモデルのテキスト入力として考えることにより、現代のNLP研究からよく知られた技術を適用することができる。
これらのモデルにより,種々のハードウェア特性に対する誤差境界が低く,合理的に優れた推定値が得られることを示す。
論文 参考訳(メタデータ) (2023-02-14T11:32:47Z) - Deep Physics Corrector: A physics enhanced deep learning architecture
for solving stochastic differential equations [0.0]
微分方程式(SDE)によって制御される物理系に対する新しいグレーボックスモデリングアルゴリズムを提案する。
提案手法はDeep Physics Corrector(DPC)と呼ばれ、SDEとDeep Neural Network(DNN)で表される近似物理学をブレンドする。
本論文では,本論文の4つのベンチマーク例について,提案したDPCの性能について述べる。
論文 参考訳(メタデータ) (2022-09-20T14:30:07Z) - Advancing Reacting Flow Simulations with Data-Driven Models [50.9598607067535]
マルチ物理問題における機械学習ツールの効果的な利用の鍵は、それらを物理モデルとコンピュータモデルに結合することである。
本章では, 燃焼システムにおけるデータ駆動型低次モデリングの適用可能性について概説する。
論文 参考訳(メタデータ) (2022-09-05T16:48:34Z) - DiffSkill: Skill Abstraction from Differentiable Physics for Deformable
Object Manipulations with Tools [96.38972082580294]
DiffSkillは、変形可能なオブジェクト操作タスクを解決するために、スキル抽象化に微分可能な物理シミュレータを使用する新しいフレームワークである。
特に、勾配に基づくシミュレーターから個々のツールを用いて、まず短距離のスキルを得る。
次に、RGBD画像を入力として取り込む実演軌跡から、ニューラルネットワークの抽象体を学習する。
論文 参考訳(メタデータ) (2022-03-31T17:59:38Z) - PlasticineLab: A Soft-Body Manipulation Benchmark with Differentiable
Physics [89.81550748680245]
PasticineLabと呼ばれる新しい微分可能な物理ベンチマークを導入する。
各タスクにおいて、エージェントはマニピュレータを使用して、プラスチックを所望の構成に変形させる。
本稿では,既存の強化学習(RL)手法と勾配に基づく手法について評価する。
論文 参考訳(メタデータ) (2021-04-07T17:59:23Z) - Learning Discrete Energy-based Models via Auxiliary-variable Local
Exploration [130.89746032163106]
離散構造データに対する条件付きおよび非条件付きEMMを学習するための新しいアルゴリズムであるALOEを提案する。
エネルギー関数とサンプリング器は、新しい変分型電力繰り返しにより効率よく訓練できることを示す。
本稿では、ソフトウェアテストのためのエネルギーモデルガイド付ファジィザについて、libfuzzerのようなよく設計されたファジィエンジンに匹敵する性能を実現する。
論文 参考訳(メタデータ) (2020-11-10T19:31:29Z) - Predictive Coding Approximates Backprop along Arbitrary Computation
Graphs [68.8204255655161]
我々は、コア機械学習アーキテクチャを予測的符号化に翻訳する戦略を開発する。
私たちのモデルは、挑戦的な機械学習ベンチマークのバックプロップと同等に機能します。
本手法は,ニューラルネットワークに標準機械学習アルゴリズムを直接実装できる可能性を高める。
論文 参考訳(メタデータ) (2020-06-07T15:35:47Z) - Learning to Simulate Complex Physics with Graph Networks [68.43901833812448]
本稿では,機械学習のフレームワークとモデルの実装について紹介する。
グラフネットワーク・ベース・シミュレータ(GNS)と呼ばれる我々のフレームワークは、グラフ内のノードとして表現された粒子で物理系の状態を表現し、学習されたメッセージパスによって動的を計算します。
我々のモデルは,訓練中に数千の粒子による1段階の予測から,異なる初期条件,数千の時間ステップ,少なくとも1桁以上の粒子をテスト時に一般化できることを示す。
論文 参考訳(メタデータ) (2020-02-21T16:44:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。