論文の概要: Classical and quantum random-walk centrality measures in multilayer
networks
- arxiv url: http://arxiv.org/abs/2012.07157v2
- Date: Sun, 25 Apr 2021 06:28:18 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-20 23:23:15.699785
- Title: Classical and quantum random-walk centrality measures in multilayer
networks
- Title(参考訳): 多層ネットワークにおける古典的および量子的ランダムウォーク中心度測定
- Authors: Lucas B\"ottcher and Mason A. Porter
- Abstract要約: ノードとノード層の重要性を分類することは、多層ネットワークの研究において重要な側面である。
様々な構造的特徴に応じてノードとノード層をランク付けできるような、様々な集中度尺度を計算することは一般的である。
我々は,本フレームワークを様々な合成および実世界の多層ネットワークに適用し,古典的および量子的中心性尺度の顕著な差異を同定する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multilayer network analysis is a useful approach for studying the structural
properties of entities with diverse, multitudinous relations. Classifying the
importance of nodes and node-layer tuples is an important aspect of the study
of multilayer networks. To do this, it is common to calculate various
centrality measures, which allow one to rank nodes and node-layers according to
a variety of structural features. In this paper, we formulate occupation,
PageRank, betweenness, and closeness centralities in terms of node-occupation
properties of different types of continuous-time classical and quantum random
walks on multilayer networks. We apply our framework to a variety of synthetic
and real-world multilayer networks, and we identify marked differences between
classical and quantum centrality measures. Our computations also give insights
into the correlations between certain random-walk-based and geodesic-path-based
centralities.
- Abstract(参考訳): 多層ネットワーク解析は多様な多元関係を持つ実体の構造的性質を研究するのに有用な手法である。
ノードとノード層タプルの重要性を分類することは、多層ネットワークの研究の重要な側面である。
これを行うには、様々な構造的特徴に応じてノードとノード層をランク付けできる様々な集中度尺度を計算することが一般的である。
本稿では,多層ネットワーク上の異なる種類の連続時間古典的・量子的ランダムウォークのノード占有特性の観点から,占有率,ページランク,間隙率,近接性中心性を定式化する。
我々は,本フレームワークを様々な合成および実世界の多層ネットワークに適用し,古典的および量子的中心性尺度の顕著な差異を同定する。
また,ランダムウォークとジオデシックパスの相関関係についても考察した。
関連論文リスト
- Sifting out communities in large sparse networks [2.666294200266662]
大規模ネットワークにおけるクラスタリングの結果の質を定量化するための直感的な客観的関数を導入する。
この領域に特に適したコミュニティを特定するために,2段階の手法を用いる。
数万のノードからなる大規模ネットワークにおける複雑な遺伝的相互作用を同定する。
論文 参考訳(メタデータ) (2024-05-01T18:57:41Z) - Hierarchical Multi-Marginal Optimal Transport for Network Alignment [52.206006379563306]
マルチネットワークアライメントは,複数ネットワーク上での協調学習に必須の要件である。
マルチネットワークアライメントのための階層型マルチマージ最適トランスポートフレームワークHOTを提案する。
提案するHOTは,有効性とスケーラビリティの両面で,最先端の大幅な改善を実現している。
論文 参考訳(メタデータ) (2023-10-06T02:35:35Z) - Multilayer Multiset Neuronal Networks -- MMNNs [55.2480439325792]
本研究は,2層以上の類似性ニューロンを組み込んだ多層神経回路網について述べる。
また,回避すべき画像領域に割り当てられる反プロトタイプ点の利用についても検討した。
論文 参考訳(メタデータ) (2023-08-28T12:55:13Z) - Multi-view Multi-label Anomaly Network Traffic Classification based on
MLP-Mixer Neural Network [55.21501819988941]
畳み込みニューラルネットワーク(CNN)に基づく既存のネットワークトラフィック分類は、グローバルな情報関連を無視しながら、トラフィックデータの局所的なパターンを強調することが多い。
本稿では,エンドツーエンドのネットワークトラフィック分類手法を提案する。
論文 参考訳(メタデータ) (2022-10-30T01:52:05Z) - Rank Diminishing in Deep Neural Networks [71.03777954670323]
ニューラルネットワークのランクは、層をまたがる情報を測定する。
これは機械学習の幅広い領域にまたがる重要な構造条件の例である。
しかし、ニューラルネットワークでは、低ランク構造を生み出す固有のメカニズムはあいまいで不明瞭である。
論文 参考訳(メタデータ) (2022-06-13T12:03:32Z) - Community detection in multiplex networks based on orthogonal
nonnegative matrix tri-factorization [26.53951886710295]
我々は,各層に共通するコミュニティと,各層に固有のコミュニティを識別する,新しい多重化コミュニティ検出手法を導入する。
提案アルゴリズムは, 合成および実多重化の両方で評価し, 最先端技術と比較した。
論文 参考訳(メタデータ) (2022-05-02T02:33:15Z) - Fast Topological Clustering with Wasserstein Distance [0.0]
本稿では,複雑なネットワークを複雑なトポロジでクラスタリングする,新しい,実用的なトポロジクラスタリング手法を提案する。
このようなネットワークは、そのトポロジカル構造と幾何学的構造の両方に基づいて、セントロイドベースのクラスタリング戦略によってクラスタに集約される。
提案手法は,シミュレーションネットワークと機能的脳ネットワークの両方を用いて有効であることを示した。
論文 参考訳(メタデータ) (2021-11-30T21:02:53Z) - Optimized Quantum Networks [68.8204255655161]
量子ネットワークは、ネットワーク要求の前に様々な種類の絡み合いを生成することができる。
これを応用して、所望の機能に合わせた絡み合いベースの量子ネットワークを設計する。
論文 参考訳(メタデータ) (2021-07-21T18:00:07Z) - Global and Individualized Community Detection in Inhomogeneous
Multilayer Networks [14.191073951237772]
ネットワークアプリケーションでは、同じ主題の集合上で観測される複数のネットワークの形でデータセットを取得することがますます一般的になっている。
このようなデータセットは、各レイヤが別々のネットワーク自身であるマルチレイヤネットワークによってモデル化され、異なるレイヤが関連付けられ、共通の情報を共有することができる。
本稿では,非均質な多層ネットワークモデルを用いたスタイリングによるコミュニティ検出について検討する。
論文 参考訳(メタデータ) (2020-12-02T02:42:52Z) - Unsupervised Differentiable Multi-aspect Network Embedding [52.981277420394846]
本稿では,asp2vecと呼ばれるマルチアスペクトネットワーク埋め込みのための新しいエンドツーエンドフレームワークを提案する。
提案するフレームワークは容易に異種ネットワークに拡張できる。
論文 参考訳(メタデータ) (2020-06-07T19:26:20Z) - A Clarified Typology of Core-Periphery Structure in Networks [0.09208007322096533]
コア周辺構造(英語版)は、ネットワークを密度の高いコアと疎い周辺に配置し、様々な社会的、生物学的、技術的ネットワークの汎用的な記述子である。
異なるコア周辺アルゴリズムは、コア周辺構造の一貫性のない記述が得られるにもかかわらず、しばしば適用される。
論文 参考訳(メタデータ) (2020-05-20T16:57:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。