論文の概要: CARE: Commonsense-Aware Emotional Response Generation with Latent
Concepts
- arxiv url: http://arxiv.org/abs/2012.08377v2
- Date: Sun, 28 Feb 2021 05:53:41 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-07 05:39:26.377507
- Title: CARE: Commonsense-Aware Emotional Response Generation with Latent
Concepts
- Title(参考訳): CARE:潜在概念を用いたコモンセンス対応感情応答生成
- Authors: Peixiang Zhong, Di Wang, Pengfei Li, Chen Zhang, Hao Wang, Chunyan
Miao
- Abstract要約: 本研究では,コモンセンスを意識した感情応答生成のための新しいモデルCAREを提案する。
まず,その応答の感情的潜在概念を共通認識で学習し,構築する枠組みを提案する。
次に, 潜在概念を反応生成に協調的に組み込む3つの手法を提案する。
- 参考スコア(独自算出の注目度): 42.106573635463846
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Rationality and emotion are two fundamental elements of humans. Endowing
agents with rationality and emotion has been one of the major milestones in AI.
However, in the field of conversational AI, most existing models only
specialize in one aspect and neglect the other, which often leads to dull or
unrelated responses. In this paper, we hypothesize that combining rationality
and emotion into conversational agents can improve response quality. To test
the hypothesis, we focus on one fundamental aspect of rationality, i.e.,
commonsense, and propose CARE, a novel model for commonsense-aware emotional
response generation. Specifically, we first propose a framework to learn and
construct commonsense-aware emotional latent concepts of the response given an
input message and a desired emotion. We then propose three methods to
collaboratively incorporate the latent concepts into response generation.
Experimental results on two large-scale datasets support our hypothesis and
show that our model can produce more accurate and commonsense-aware emotional
responses and achieve better human ratings than state-of-the-art models that
only specialize in one aspect.
- Abstract(参考訳): 合理性と感情は人間の2つの基本的な要素である。
合理性と感情を持ったエージェントを導くことは、AIの主要なマイルストーンの1つです。
しかし、会話型aiの分野では、既存のモデルのほとんどは一方の側面のみを専門とし、もう一方の側面を無視する。
本稿では、合理性と感情を会話エージェントに組み合わせることで、反応品質を向上させることができると仮定する。
仮説を検証するために,コモンセンスという合理性の1つの基本的な側面に注目し,コモンセンスを意識した感情応答生成のための新しいモデルであるケアを提案する。
具体的には、まず、入力メッセージと所望の感情を与えられた応答の常識的感情的潜在概念を学習し、構築する枠組みを提案する。
次に,潜在概念を応答生成に協調的に組み込む3つの手法を提案する。
2つの大規模データセットの実験結果は,我々の仮説を支持し,我々のモデルが1つの側面のみを専門とする最先端モデルよりも正確で常識に合った感情応答を生成できることを示す。
関連論文リスト
- Think out Loud: Emotion Deducing Explanation in Dialogues [57.90554323226896]
対話における感情推論(Emotion Deducing Explanation in Dialogues)を提案する。
EDENは感情と原因を明確な考え方で認識する。
大規模言語モデル(LLM)が感情や原因をよりよく認識するのに役立ちます。
論文 参考訳(メタデータ) (2024-06-07T08:58:29Z) - Improved Emotional Alignment of AI and Humans: Human Ratings of Emotions Expressed by Stable Diffusion v1, DALL-E 2, and DALL-E 3 [10.76478480925475]
生成AIシステムは、テキストや画像を通じて感情を表現する能力がますます高まっている。
生成的AIによって表現される感情と人間の知覚のアライメントを測定する。
我々は、アライメントが使用するAIモデルと感情そのものに大きく依存していることを示します。
論文 参考訳(メタデータ) (2024-05-28T18:26:57Z) - The Good, The Bad, and Why: Unveiling Emotions in Generative AI [73.94035652867618]
EmotionPromptはAIモデルの性能を向上し、EmotionAttackはそれを妨げうることを示す。
EmotionDecodeによると、AIモデルは人間の脳内のドーパミンのメカニズムに似た感情的な刺激を理解することができる。
論文 参考訳(メタデータ) (2023-12-18T11:19:45Z) - Rational Sensibility: LLM Enhanced Empathetic Response Generation Guided by Self-presentation Theory [8.439724621886779]
LLM(Large Language Models)の開発は、人間中心の人工知能(AGI)に希望の光を与えている。
共感は人間にとって重要な感情的属性として機能し、人間中心のAGIにおいて不定の役割を果たす。
本稿では,社会学における自己表現理論にインスパイアされた革新的なエンコーダモジュールを設計する。
論文 参考訳(メタデータ) (2023-12-14T07:38:12Z) - Use of a Taxonomy of Empathetic Response Intents to Control and
Interpret Empathy in Neural Chatbots [4.264192013842096]
オープンドメインの会話エージェントの領域における近年のトレンドは、感情的なプロンプトに共感的に会話できるようにすることである。
現在のアプローチでは、エンド・ツー・エンドのアプローチに従うか、同様の感情ラベルに応答を条件づけて共感的な反応を生成する。
我々は,次の応答の感情/意図を予測し,これらの予測された感情/意図に基づいて応答を生成するためのルールベースおよびニューラルアプローチを提案する。
論文 参考訳(メタデータ) (2023-05-17T10:03:03Z) - CASE: Aligning Coarse-to-Fine Cognition and Affection for Empathetic
Response Generation [59.8935454665427]
共感的対話モデルは、通常、感情的な側面のみを考慮するか、孤立して認知と愛情を扱う。
共感的対話生成のためのCASEモデルを提案する。
論文 参考訳(メタデータ) (2022-08-18T14:28:38Z) - HICEM: A High-Coverage Emotion Model for Artificial Emotional
Intelligence [9.153146173929935]
次世代の人工知能(AEI)は、より深く、より有意義な人間と機械の相互作用に対するユーザの欲求に対処するために、中心的な段階を採っている。
心理学における歴史的焦点である感情の理論とは異なり、感情モデルは記述的な道具である。
この研究は、社会ロボティクス、人間と機械の相互作用、メンタルヘルスケア、計算心理学に幅広い影響を及ぼす。
論文 参考訳(メタデータ) (2022-06-15T15:21:30Z) - Emotion-aware Chat Machine: Automatic Emotional Response Generation for
Human-like Emotional Interaction [55.47134146639492]
この記事では、投稿中のセマンティクスと感情を同時にエンコードできる、未定義のエンドツーエンドニューラルネットワークを提案する。
実世界のデータを用いた実験により,提案手法は,コンテンツコヒーレンスと感情の適切性の両方の観点から,最先端の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2021-06-06T06:26:15Z) - Machine Common Sense [77.34726150561087]
機械の常識は、人工知能(AI)において広範で潜在的に無拘束な問題のままである
本稿では、対人インタラクションのようなドメインに焦点を当てたコモンセンス推論のモデル化の側面について論じる。
論文 参考訳(メタデータ) (2020-06-15T13:59:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。