論文の概要: Use of a Taxonomy of Empathetic Response Intents to Control and
Interpret Empathy in Neural Chatbots
- arxiv url: http://arxiv.org/abs/2305.10096v1
- Date: Wed, 17 May 2023 10:03:03 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-18 16:37:46.827138
- Title: Use of a Taxonomy of Empathetic Response Intents to Control and
Interpret Empathy in Neural Chatbots
- Title(参考訳): 交感神経応答成分の分類法を用いた神経チャットボットの共感制御と解釈
- Authors: Anuradha Welivita and Pearl Pu
- Abstract要約: オープンドメインの会話エージェントの領域における近年のトレンドは、感情的なプロンプトに共感的に会話できるようにすることである。
現在のアプローチでは、エンド・ツー・エンドのアプローチに従うか、同様の感情ラベルに応答を条件づけて共感的な反応を生成する。
我々は,次の応答の感情/意図を予測し,これらの予測された感情/意図に基づいて応答を生成するためのルールベースおよびニューラルアプローチを提案する。
- 参考スコア(独自算出の注目度): 4.264192013842096
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: A recent trend in the domain of open-domain conversational agents is enabling
them to converse empathetically to emotional prompts. Current approaches either
follow an end-to-end approach or condition the responses on similar emotion
labels to generate empathetic responses. But empathy is a broad concept that
refers to the cognitive and emotional reactions of an individual to the
observed experiences of another and it is more complex than mere mimicry of
emotion. Hence, it requires identifying complex human conversational strategies
and dynamics in addition to generic emotions to control and interpret
empathetic responding capabilities of chatbots. In this work, we make use of a
taxonomy of eight empathetic response intents in addition to generic emotion
categories in building a dialogue response generation model capable of
generating empathetic responses in a controllable and interpretable manner. It
consists of two modules: 1) a response emotion/intent prediction module; and 2)
a response generation module. We propose several rule-based and neural
approaches to predict the next response's emotion/intent and generate responses
conditioned on these predicted emotions/intents. Automatic and human evaluation
results emphasize the importance of the use of the taxonomy of empathetic
response intents in producing more diverse and empathetically more appropriate
responses than end-to-end models.
- Abstract(参考訳): オープンドメインの会話エージェントの領域における近年のトレンドは、感情的なプロンプトに共感的に会話できるようにすることである。
現在のアプローチでは、エンドツーエンドのアプローチに従うか、同様の感情ラベルに応答を条件付けして共感的な反応を生成する。
しかし共感とは、他者の観察された経験に対する個人の認知的および感情的な反応を指す広い概念であり、感情の単なる模倣よりも複雑である。
したがって、チャットボットの共感応答能力を制御し、解釈するために、複雑な人間の会話戦略とダイナミクスを特定することが必要である。
本研究では,共感応答を制御可能かつ解釈可能な方法で生成可能な対話応答生成モデルを構築する際に,感情カテゴリーに加えて8つの共感応答意図の分類を用いる。
2つのモジュールから構成される。
1)反応感情/意図予測モジュール、及び
2)応答生成モジュール。
我々は,次の応答の感情/意図を予測し,これらの予測された感情/意図に基づいて応答を生成するためのルールベースおよびニューラルアプローチを提案する。
自動的および人的評価の結果は、エンド・ツー・エンドモデルよりも多様で共感的により適切な応答を生成する上で、共感的反応意図の分類学的利用の重要性を強調した。
関連論文リスト
- CTSM: Combining Trait and State Emotions for Empathetic Response Model [2.865464162057812]
共感応答生成は、対話システムに話者の感情を知覚し、それに応じて共感応答を生成する。
我々は,共感反応モデル(CTSM)のためのトラストと状態感情の組み合わせを提案する。
対話における感情を十分に知覚するために、まず特徴と状態の感情の埋め込みを構築し、エンコードする。
感情表現を誘導する感情誘導モジュールにより、感情知覚能力をさらに強化する。
論文 参考訳(メタデータ) (2024-03-22T10:45:13Z) - E-CORE: Emotion Correlation Enhanced Empathetic Dialogue Generation [33.57399405783864]
本稿では,感情相関を改良した共感対話生成フレームワークを提案する。
具体的には、文脈に基づく感情の相互作用を捉えるために、マルチレゾリューション感情グラフを考案した。
そこで我々は,感情相関強化デコーダを提案し,新しい相関認識アグリゲーションとソフト/ハード戦略を提案する。
論文 参考訳(メタデータ) (2023-11-25T12:47:39Z) - Empathetic Response Generation via Emotion Cause Transition Graph [29.418144401849194]
共感的対話は、感情的要因(例えば、感情の状態)と認知的要因(例えば、感情の原因)の両方の知覚を必要とする人間のような行動である。
共感対話における2つのターン間の感情原因の自然な遷移を明示的にモデル化する感情原因遷移グラフを提案する。
このグラフでは、次のターンで生じる感情の概念語を、特殊に設計された概念認識デコーダによって予測し、使用し、共感的な応答を生成する。
論文 参考訳(メタデータ) (2023-02-23T05:51:17Z) - CASE: Aligning Coarse-to-Fine Cognition and Affection for Empathetic
Response Generation [59.8935454665427]
共感的対話モデルは、通常、感情的な側面のみを考慮するか、孤立して認知と愛情を扱う。
共感的対話生成のためのCASEモデルを提案する。
論文 参考訳(メタデータ) (2022-08-18T14:28:38Z) - Empathetic Response Generation with State Management [32.421924357260075]
共感的反応生成の目標は、会話における感情を知覚し表現する対話システムの能力を高めることである。
感情や意図を含む複数の状態情報を同時に考察できる新しい共感応答生成モデルを提案する。
実験の結果、異なる情報を動的に管理することは、モデルがより共感的な反応を生成するのに役立つことが示された。
論文 参考訳(メタデータ) (2022-05-07T16:17:28Z) - EmpBot: A T5-based Empathetic Chatbot focusing on Sentiments [75.11753644302385]
共感的会話エージェントは、議論されていることを理解しているだけでなく、会話相手の暗黙の感情も認識すべきである。
変圧器事前学習言語モデル(T5)に基づく手法を提案する。
本研究では,自動計測と人的評価の両方を用いて,情緒的ダイアログデータセットを用いたモデルの評価を行った。
論文 参考訳(メタデータ) (2021-10-30T19:04:48Z) - Perspective-taking and Pragmatics for Generating Empathetic Responses
Focused on Emotion Causes [50.569762345799354]
i) 相手の感情が発話から引き起こされる原因となる単語を特定することと, (ii) 応答生成における特定の単語を反映することである。
社会的認知からインスピレーションを得て、生成的推定を用いて、感情が単語レベルのラベルのない発話から単語を推論する。
論文 参考訳(メタデータ) (2021-09-18T04:22:49Z) - Exemplars-guided Empathetic Response Generation Controlled by the
Elements of Human Communication [88.52901763928045]
そこで本稿では, インターロケータへの共感を伝達する, 造形モデルによる細かな構造的特性の解明に先立って, 模範的手法を提案する。
これらの手法は, 自動評価指標と人的評価指標の両方の観点から, 共感的応答品質の大幅な改善をもたらすことを実証的に示す。
論文 参考訳(メタデータ) (2021-06-22T14:02:33Z) - Emotion-aware Chat Machine: Automatic Emotional Response Generation for
Human-like Emotional Interaction [55.47134146639492]
この記事では、投稿中のセマンティクスと感情を同時にエンコードできる、未定義のエンドツーエンドニューラルネットワークを提案する。
実世界のデータを用いた実験により,提案手法は,コンテンツコヒーレンスと感情の適切性の両方の観点から,最先端の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2021-06-06T06:26:15Z) - MIME: MIMicking Emotions for Empathetic Response Generation [82.57304533143756]
共感応答生成への現在のアプローチは、入力テキストで表現された感情の集合を平らな構造として見る。
共感反応は, 肯定的, 否定的, 内容に応じて, ユーザの感情を様々な程度に模倣することが多い。
論文 参考訳(メタデータ) (2020-10-04T00:35:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。