論文の概要: A grid-point detection method based on U-net for a structured light
system
- arxiv url: http://arxiv.org/abs/2012.08641v1
- Date: Sat, 5 Dec 2020 09:33:43 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-22 16:55:24.533326
- Title: A grid-point detection method based on U-net for a structured light
system
- Title(参考訳): 構造化光システムのためのU-netに基づく格子点検出法
- Authors: Dieuthuy Pham, Minhtuan Ha and Changyan Xiao
- Abstract要約: 本稿では,U-netに基づくグリッドポイント検出手法を提案する。
実験結果から,本手法は従来手法と比較して精度が高く,優れた検出性能が得られることが示された。
- 参考スコア(独自算出の注目度): 0.17188280334580192
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate detection of the feature points of the projected pattern plays an
extremely important role in one-shot 3D reconstruction systems, especially for
the ones using a grid pattern. To solve this problem, this paper proposes a
grid-point detection method based on U-net. A specific dataset is designed that
includes the images captured with the two-shot imaging method and the ones
acquired with the one-shot imaging method. Among them, the images in the first
group after labeled as the ground truth images and the images captured at the
same pose with the one-shot method are cut into small patches with the size of
64x64 pixels then feed to the training set. The remaining of the images in the
second group is the test set. The experimental results show that our method can
achieve a better detecting performance with higher accuracy in comparison with
the previous methods.
- Abstract(参考訳): 投影パターンの特徴点の正確な検出は、特に格子パターンを用いた場合、ワンショット3D再構成システムにおいて極めて重要な役割を果たす。
そこで本稿では,u-netに基づくグリッドポイント検出手法を提案する。
2枚撮影方式で撮影した画像と1枚撮影方式で取得した画像とを含む、特定のデータセットをデザインする。
このうち、グランド真理画像としてラベル付けされた第1グループ内の画像と、ワンショット方式で同じポーズで撮影された画像とを、64x64ピクセルの大きさの小さなパッチにカットし、トレーニングセットに供給する。
第2グループ内の残りの画像はテストセットである。
実験結果から,本手法は従来手法と比較して精度が高く,優れた検出性能が得られることが示された。
関連論文リスト
- A Large-scale AI-generated Image Inpainting Benchmark [11.216906046169683]
本稿では,高品質な塗り絵データセットの作成手法を提案し,それをDiQuID作成に適用する。
DiQuIDは、MS-COCO、RAISE、OpenImagesから78,000個のオリジナル画像から生成された95,000枚のインペイント画像で構成されている。
我々は、最先端の偽造検出手法を用いて包括的なベンチマーク結果を提供し、検出アルゴリズムの評価と改善におけるデータセットの有効性を実証する。
論文 参考訳(メタデータ) (2025-02-10T15:56:28Z) - Mismatched: Evaluating the Limits of Image Matching Approaches and Benchmarks [9.388897214344572]
2次元画像からの3次元3次元再構成はコンピュータビジョンにおける活発な研究分野である。
伝統的にこの作業にはパラメトリック技術が用いられてきた。
近年の進歩は、学習ベースの方法にシフトしている。
論文 参考訳(メタデータ) (2024-08-29T11:16:34Z) - Deep Learning Based Speckle Filtering for Polarimetric SAR Images. Application to Sentinel-1 [51.404644401997736]
本稿では、畳み込みニューラルネットワークを用いて偏光SAR画像のスペックルを除去するための完全なフレームワークを提案する。
実験により,提案手法はスペックル低減と分解能保存の両方において例外的な結果をもたらすことが示された。
論文 参考訳(メタデータ) (2024-08-28T10:07:17Z) - ObjectFormer for Image Manipulation Detection and Localization [118.89882740099137]
画像操作の検出とローカライズを行うObjectFormerを提案する。
画像の高周波特徴を抽出し,マルチモーダルパッチの埋め込みとしてRGB特徴と組み合わせる。
各種データセットについて広範な実験を行い,提案手法の有効性を検証した。
論文 参考訳(メタデータ) (2022-03-28T12:27:34Z) - A Hierarchical Transformation-Discriminating Generative Model for Few
Shot Anomaly Detection [93.38607559281601]
各トレーニングイメージのマルチスケールパッチ分布をキャプチャする階層的生成モデルを開発した。
この異常スコアは、スケール及び画像領域にわたる正しい変換のパッチベースの投票を集約して得られる。
論文 参考訳(メタデータ) (2021-04-29T17:49:48Z) - City-scale Scene Change Detection using Point Clouds [71.73273007900717]
2つの異なる時間にカメラを設置して撮影した画像を用いて都市の構造変化を検出する手法を提案する。
変化検出のための2点雲の直接比較は、不正確な位置情報のため理想的ではない。
この問題を回避するために,ポイントクラウド上での深層学習に基づく非厳密な登録を提案する。
提案手法は,視点や照明の違いがあっても,シーン変化を効果的に検出できることを示す。
論文 参考訳(メタデータ) (2021-03-26T08:04:13Z) - Image Splicing Detection, Localization and Attribution via JPEG Primary
Quantization Matrix Estimation and Clustering [49.75353434786065]
画像領域の異なる2つのJPEGアーチファクトの不整合の検出は、しばしば局所的な画像操作を検出するために使用される。
ドナー画像の異なる領域を識別するエンド・ツー・エンドシステムを提案する。
論文 参考訳(メタデータ) (2021-02-02T11:21:49Z) - Depth image denoising using nuclear norm and learning graph model [107.51199787840066]
グループベース画像復元法は,パッチ間の類似性収集に有効である。
各パッチに対して、検索ウィンドウ内で最もよく似たパッチを見つけ、グループ化する。
提案手法は, 主観的, 客観的両面において, 最先端の復調法よりも優れている。
論文 参考訳(メタデータ) (2020-08-09T15:12:16Z) - Leveraging Photogrammetric Mesh Models for Aerial-Ground Feature Point
Matching Toward Integrated 3D Reconstruction [19.551088857830944]
地上・地上画像の統合は, 都市環境における表面の再構築を効果的に進めるためのアプローチとして証明されている。
幾何認識による画像補正に基づく従来の研究により,この問題は緩和された。
地上画像マッチングにフォトグラムメッシュモデルを利用する新しい手法を提案する。
論文 参考訳(メタデータ) (2020-02-21T01:47:59Z) - Image retrieval approach based on local texture information derived from
predefined patterns and spatial domain information [14.620086904601472]
提案手法の性能は,Simplicityデータベース上での精度とリコールの観点から評価する。
比較の結果,提案手法は既知の多くの手法よりも精度が高いことがわかった。
論文 参考訳(メタデータ) (2019-12-30T16:11:04Z) - An End-to-End Network for Co-Saliency Detection in One Single Image [47.35448093528382]
単一の画像内の共分散検出は、まだ十分に対処されていない一般的な視覚問題である。
本研究では、バックボーンネットと2つの分岐ネットからなる新しいエンドツーエンドのトレーニングネットワークを提案する。
本研究では,2,019個の自然画像のデータセットを各画像に共分散して構築し,提案手法の評価を行う。
論文 参考訳(メタデータ) (2019-10-25T16:00:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。