論文の概要: Clinical Temporal Relation Extraction with Probabilistic Soft Logic
Regularization and Global Inference
- arxiv url: http://arxiv.org/abs/2012.08790v1
- Date: Wed, 16 Dec 2020 08:23:03 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-03 03:10:46.614936
- Title: Clinical Temporal Relation Extraction with Probabilistic Soft Logic
Regularization and Global Inference
- Title(参考訳): 確率的ソフト論理規則化と大域的推論を用いた臨床時間関係抽出
- Authors: Yichao Zhou, Yu Yan, Rujun Han, J. Harry Caufield, Kai-Wei Chang,
Yizhou Sun, Peipei Ping, and Wei Wang
- Abstract要約: 既存のメソッドは、高価な機能エンジニアリングを必要とするか、イベント間のグローバルな依存関係をモデル化できない。
本稿では,確率論的ソフト論理規則化とグローバル推論を用いた新しい臨床時間緩和法を提案する。
- 参考スコア(独自算出の注目度): 50.029659413650194
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There has been a steady need in the medical community to precisely extract
the temporal relations between clinical events. In particular, temporal
information can facilitate a variety of downstream applications such as case
report retrieval and medical question answering. Existing methods either
require expensive feature engineering or are incapable of modeling the global
relational dependencies among the events. In this paper, we propose a novel
method, Clinical Temporal ReLation Exaction with Probabilistic Soft Logic
Regularization and Global Inference (CTRL-PG) to tackle the problem at the
document level. Extensive experiments on two benchmark datasets, I2B2-2012 and
TB-Dense, demonstrate that CTRL-PG significantly outperforms baseline methods
for temporal relation extraction.
- Abstract(参考訳): 臨床イベント間の時間的関係を正確に抽出する医療コミュニティは着実に必要とされている。
特に、時間情報は、ケースレポート検索や医療質問応答など、さまざまなダウンストリームアプリケーションを促進することができる。
既存のメソッドは、高価な機能エンジニアリングを必要とするか、イベント間のグローバルなリレーショナル依存関係をモデル化できないかのいずれかです。
本稿では,確率的ソフト論理規則化とグローバル推論(CTRL-PG)による,文書レベルでの問題に取り組むための新手法を提案する。
2つのベンチマークデータセットであるI2B2-2012とTB-Denseの大規模な実験により、CTRL-PGは時間的関係抽出の基準法よりも著しく優れていることが示された。
関連論文リスト
- Continuous-Time Modeling of Counterfactual Outcomes Using Neural
Controlled Differential Equations [84.42837346400151]
反現実的な結果を予測することは、パーソナライズされたヘルスケアをアンロックする可能性がある。
既存の因果推論アプローチでは、観察と治療決定の間の通常の離散時間間隔が考慮されている。
そこで本研究では,腫瘍増殖モデルに基づく制御可能なシミュレーション環境を提案する。
論文 参考訳(メタデータ) (2022-06-16T17:15:15Z) - Federated Offline Reinforcement Learning [62.45821316740614]
マルチサイトマルコフ決定プロセスモデルを提案する。
我々は,オフラインRLを対象とした最初のフェデレーション最適化アルゴリズムを設計する。
本手法は、複数の部位に設定された敗血症データセットに適用され、臨床現場での使用例を示す。
論文 参考訳(メタデータ) (2022-06-11T18:03:26Z) - Auto-FedRL: Federated Hyperparameter Optimization for
Multi-institutional Medical Image Segmentation [48.821062916381685]
Federated Learning(FL)は、明示的なデータ共有を避けながら協調的なモデルトレーニングを可能にする分散機械学習技術である。
本稿では,Auto-FedRLと呼ばれる,効率的な強化学習(RL)に基づくフェデレーションハイパーパラメータ最適化アルゴリズムを提案する。
提案手法の有効性は,CIFAR-10データセットと2つの実世界の医用画像セグメンテーションデータセットの不均一なデータ分割に対して検証される。
論文 参考訳(メタデータ) (2022-03-12T04:11:42Z) - Real-time landmark detection for precise endoscopic submucosal
dissection via shape-aware relation network [51.44506007844284]
内視鏡下粘膜下郭清術における高精度かつリアルタイムなランドマーク検出のための形状認識型関係ネットワークを提案する。
まず,ランドマーク間の空間的関係に関する先行知識を直感的に表現する関係キーポイント・ヒートマップを自動生成するアルゴリズムを考案する。
次に、事前知識を学習プロセスに段階的に組み込むために、2つの補完的な正規化手法を開発する。
論文 参考訳(メタデータ) (2021-11-08T07:57:30Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
本稿では,データ生成プロセスの根底にある因果構造を素早く識別する能動的介入ターゲット機構を提案する。
本手法は,ランダムな介入ターゲティングと比較して,要求される対話回数を大幅に削減する。
シミュレーションデータから実世界のデータまで,複数のベンチマークにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2021-09-06T13:10:37Z) - Policy Optimization in Bayesian Network Hybrid Models of
Biomanufacturing Processes [3.124775036986647]
バイオマニュファクチャリングプロセスは、綿密な監視と制御を必要とする。
低データ環境における人間レベルの制御を実現するためのモデルベース強化学習フレームワークを開発した。
論文 参考訳(メタデータ) (2021-05-13T20:39:02Z) - Large-scale Augmented Granger Causality (lsAGC) for Connectivity
Analysis in Complex Systems: From Computer Simulations to Functional MRI
(fMRI) [0.0]
本稿では,複合システムにおける接続解析の方法として,大規模Augmented Granger Causality (lsAGC)を導入している。
lsAGCアルゴリズムは、寸法低減とソース時系列拡張を組み合わせた。
合成指向性時系列ネットワーク上での lsAGC の性能を定量的に評価する。
論文 参考訳(メタデータ) (2021-01-10T01:44:48Z) - Sample-Efficient Reinforcement Learning via Counterfactual-Based Data
Augmentation [15.451690870640295]
医療などのいくつかのシナリオでは、通常、各患者に利用可能なレコードはごくわずかであり、現在の強化学習アルゴリズムの適用を妨げる。
構造因果モデル(SCM)を利用して状態ダイナミクスをモデル化する,データ効率の高いRLアルゴリズムを提案する。
本研究は, 軽度条件下では反実結果が識別可能であり, 反実に基づく拡張データセット上のq学習が最適値関数に収束することを示す。
論文 参考訳(メタデータ) (2020-12-16T17:21:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。