論文の概要: Unsupervised Behaviour Analysis and Magnification (uBAM) using Deep
Learning
- arxiv url: http://arxiv.org/abs/2012.09237v3
- Date: Tue, 6 Apr 2021 13:52:14 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-03 03:12:41.167800
- Title: Unsupervised Behaviour Analysis and Magnification (uBAM) using Deep
Learning
- Title(参考訳): 深層学習を用いた教師なし行動分析と拡大(uBAM)
- Authors: Biagio Brattoli, Uta Buechler, Michael Dorkenwald, Philipp Reiser,
Linard Filli, Fritjof Helmchen, Anna-Sophia Wahl, Bjoern Ommer
- Abstract要約: 運動行動分析は、運動障害とその介入による変化を特定する非侵襲的戦略を提供する。
偏差の検出と拡大による挙動解析のための自動深層学習アルゴリズムであるuBAM(Unsupervised Behavior Analysis and magnification)について紹介する。
中心となる側面は姿勢と行動表現の教師なし学習であり、運動の客観的比較を可能にする。
- 参考スコア(独自算出の注目度): 5.101123537955207
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Motor behaviour analysis is essential to biomedical research and clinical
diagnostics as it provides a non-invasive strategy for identifying motor
impairment and its change caused by interventions. State-of-the-art
instrumented movement analysis is time- and cost-intensive, since it requires
placing physical or virtual markers. Besides the effort required for marking
keypoints or annotations necessary for training or finetuning a detector, users
need to know the interesting behaviour beforehand to provide meaningful
keypoints. We introduce unsupervised behaviour analysis and magnification
(uBAM), an automatic deep learning algorithm for analysing behaviour by
discovering and magnifying deviations. A central aspect is unsupervised
learning of posture and behaviour representations to enable an objective
comparison of movement. Besides discovering and quantifying deviations in
behaviour, we also propose a generative model for visually magnifying subtle
behaviour differences directly in a video without requiring a detour via
keypoints or annotations. Essential for this magnification of deviations even
across different individuals is a disentangling of appearance and behaviour.
Evaluations on rodents and human patients with neurological diseases
demonstrate the wide applicability of our approach. Moreover, combining
optogenetic stimulation with our unsupervised behaviour analysis shows its
suitability as a non-invasive diagnostic tool correlating function to brain
plasticity.
- Abstract(参考訳): 運動行動分析は生体医学研究や臨床診断に不可欠であり、運動障害と介入による変化を識別するための非侵襲的戦略を提供する。
物理的なマーカーや仮想マーカーを配置する必要があるため、最先端の計測機動分析は時間と費用がかかる。
検出器のトレーニングや微調整に必要なキーポイントやアノテーションのマーキングに必要な労力に加えて、ユーザは重要なキーポイントを提供するために、事前に興味深い振る舞いを知る必要がある。
本研究では,非教師なし行動分析と拡大法(uBAM)を導入し,偏差の発見と拡大による行動分析を行う。
中心となる側面は姿勢と行動表現の教師なし学習であり、運動の客観的比較を可能にする。
振る舞いの偏差の発見と定量化に加えて,キーポイントやアノテーションを介さずに映像内の微妙な振る舞いの差異を視覚的に拡大する生成モデルを提案する。
異なる個人にまたがる偏差のこの拡大には、外見と行動の矛盾が不可欠である。
神経疾患患者の歯列者およびヒトに対する評価は,我々のアプローチの広範な適用性を示している。
また,視聴覚刺激と非教師なし行動分析を組み合わせることで,脳可塑性機能と関連した非侵襲的診断ツールとしての有用性が示された。
関連論文リスト
- Unsupervised Model Diagnosis [49.36194740479798]
本稿では,ユーザガイドを使わずに,意味論的対実的説明を生成するために,Unsupervised Model Diagnosis (UMO)を提案する。
提案手法は意味論における変化を特定し可視化し,その変化を広範囲なテキストソースの属性と照合する。
論文 参考訳(メタデータ) (2024-10-08T17:59:03Z) - Harnessing XGBoost for Robust Biomarker Selection of Obsessive-Compulsive Disorder (OCD) from Adolescent Brain Cognitive Development (ABCD) data [0.0]
本研究では, 若年者脳認知発達(ABCD)研究の高相関神経信号解析における各種教師あり機械学習モデルの性能評価を行った。
我々は、ニューロイメージングデータによく見られる相関構造を模倣するデータセットをシミュレーションし、ロジスティック回帰、弾性ネットワーク、ランダムフォレスト、XGBoostをマルチコリニアリティを処理し、予測特徴を正確に識別する能力に基づいて評価した。
論文 参考訳(メタデータ) (2024-05-14T23:43:34Z) - Investigating Human-Identifiable Features Hidden in Adversarial
Perturbations [54.39726653562144]
我々の研究では、最大5つの攻撃アルゴリズムを3つのデータセットにわたって探索する。
対人摂動における人間の識別可能な特徴を同定する。
画素レベルのアノテーションを用いて、そのような特徴を抽出し、ターゲットモデルに妥協する能力を実証する。
論文 参考訳(メタデータ) (2023-09-28T22:31:29Z) - A Survey of the Impact of Self-Supervised Pretraining for Diagnostic
Tasks with Radiological Images [71.26717896083433]
自己教師付き事前学習は,伝達学習における特徴表現の改善に有効であることが観察されている。
本総説ではX線, CT, 磁気共鳴, 超音波画像における使用法について概説する。
論文 参考訳(メタデータ) (2023-09-05T19:45:09Z) - Deep-seeded Clustering for Unsupervised Valence-Arousal Emotion
Recognition from Physiological Signals [1.5695847325697105]
本稿では、生理的・心理的データから感情認識を行うための、教師なしのディープクラスタフレームワークを提案する。
オープンベンチマークデータセット WESAD での試験では、深いk平均と深いc平均がラッセルの概略モデルの4つの四分項を87%の精度で区別していることが示された。
論文 参考訳(メタデータ) (2023-08-17T14:37:35Z) - Unsupervised Video Anomaly Detection for Stereotypical Behaviours in
Autism [20.09315869162054]
本稿では,コンピュータビジョン技術を用いてステレオタイプ行動を自動的に検出することに焦点を当てる。
本研究では、人間のポーズの時間的軌跡と人間の行動の反復パターンに基づいて、ステレオタイプ行動検出のためのデュアルストリーム深度モデル(DS-SBD)を提案する。
論文 参考訳(メタデータ) (2023-02-27T13:24:08Z) - Guiding Visual Attention in Deep Convolutional Neural Networks Based on
Human Eye Movements [0.0]
ディープ畳み込みニューラルネットワーク(DCNN)は、当初は生物学的ビジョンの原理にインスパイアされていた。
近年のディープラーニングの進歩は、この類似性を減らしているようだ。
有用なモデルを得るための純粋にデータ駆動型アプローチについて検討する。
論文 参考訳(メタデータ) (2022-06-21T17:59:23Z) - Computational behavior recognition in child and adolescent psychiatry: A
statistical and machine learning analysis plan [3.975358343371988]
我々は,人工知能(AI)ツールを用いた心理療法と研究のために,人間の行動のコーディングを自動化することを目的としている。
強迫性障害 (OCD) を持つ25人の若者と, 精神科的診断 (no-OCD) を伴わない12人の青少年のゴールドスタンダード半構造化診断インタビューのビデオを分析した。
論文 参考訳(メタデータ) (2022-05-11T19:12:15Z) - Overcoming the Domain Gap in Contrastive Learning of Neural Action
Representations [60.47807856873544]
神経科学の基本的な目標は、神経活動と行動の関係を理解することである。
我々は,ハエが自然に生み出す行動からなる新しいマルチモーダルデータセットを作成した。
このデータセットと新しい拡張セットは、神経科学における自己教師あり学習手法の適用を加速することを約束します。
論文 参考訳(メタデータ) (2021-11-29T15:27:51Z) - Counterfactual Attention Learning for Fine-Grained Visual Categorization
and Re-identification [101.49122450005869]
本稿では,因果推論に基づくより効果的な注意力学習法を提案する。
具体的には,学習した視覚的注意がネットワーク予測に与える影響を分析する。
本手法は,広範囲の粒度認識タスクにおいて評価する。
論文 参考訳(メタデータ) (2021-08-19T14:53:40Z) - Muti-view Mouse Social Behaviour Recognition with Deep Graphical Model [124.26611454540813]
マウスの社会的行動分析は神経変性疾患の治療効果を評価する貴重なツールである。
マウスの社会行動の豊かな記述を創出する可能性から、ネズミの観察にマルチビュービデオ記録を使用することは、ますます注目を集めている。
本稿では,ビュー固有のサブ構造とビュー共有サブ構造を協調的に学習する,新しい多視点潜在意識・動的識別モデルを提案する。
論文 参考訳(メタデータ) (2020-11-04T18:09:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。