論文の概要: Harnessing XGBoost for Robust Biomarker Selection of Obsessive-Compulsive Disorder (OCD) from Adolescent Brain Cognitive Development (ABCD) data
- arxiv url: http://arxiv.org/abs/2407.00028v1
- Date: Tue, 14 May 2024 23:43:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 22:38:24.246840
- Title: Harnessing XGBoost for Robust Biomarker Selection of Obsessive-Compulsive Disorder (OCD) from Adolescent Brain Cognitive Development (ABCD) data
- Title(参考訳): 若年者脳認知発達(ABCD)データを用いた強迫性障害(OCD)のロバストバイオマーカー選択のためのXGBoostのハーネスティング
- Authors: Xinyu Shen, Qimin Zhang, Huili Zheng, Weiwei Qi,
- Abstract要約: 本研究では, 若年者脳認知発達(ABCD)研究の高相関神経信号解析における各種教師あり機械学習モデルの性能評価を行った。
我々は、ニューロイメージングデータによく見られる相関構造を模倣するデータセットをシミュレーションし、ロジスティック回帰、弾性ネットワーク、ランダムフォレスト、XGBoostをマルチコリニアリティを処理し、予測特徴を正確に識別する能力に基づいて評価した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study evaluates the performance of various supervised machine learning models in analyzing highly correlated neural signaling data from the Adolescent Brain Cognitive Development (ABCD) Study, with a focus on predicting obsessive-compulsive disorder scales. We simulated a dataset to mimic the correlation structures commonly found in imaging data and evaluated logistic regression, elastic networks, random forests, and XGBoost on their ability to handle multicollinearity and accurately identify predictive features. Our study aims to guide the selection of appropriate machine learning methods for processing neuroimaging data, highlighting models that best capture underlying signals in high feature correlations and prioritize clinically relevant features associated with Obsessive-Compulsive Disorder (OCD).
- Abstract(参考訳): 本研究では,若年者脳認知発達研究(ABCD)の高相関神経信号解析における教師あり機械学習モデルの性能評価を行い,強迫性障害尺度の予測に焦点をあてた。
画像データによく見られる相関構造を模倣するデータセットをシミュレートし、ロジスティック回帰、弾性ネットワーク、ランダム森林、XGBoostをマルチコリニティに対処し、予測的特徴を正確に識別する能力に基づいて評価した。
本研究の目的は、ニューロイメージングデータを処理するための適切な機械学習手法の選択をガイドし、基礎となる信号を高い特徴相関で捉え、OCD(Obsessive-Compulsive Disorder)に関連する臨床的特徴を優先するモデルに焦点を当てることである。
関連論文リスト
- Exploring General Intelligence via Gated Graph Transformer in Functional
Connectivity Studies [39.82681427764513]
Gated Graph Transformer (GGT) フレームワークは,機能的接続性(FC)に基づく認知的メトリクスの予測を目的としている
フィラデルフィア神経発達コホート(PNC)に関する実証的検証は,我々のモデルにおいて優れた予測能力を示している。
論文 参考訳(メタデータ) (2024-01-18T19:28:26Z) - MBrain: A Multi-channel Self-Supervised Learning Framework for Brain
Signals [7.682832730967219]
本稿では,SEEGデータとEEGデータのいずれかを事前学習できる脳信号の自己教師型学習フレームワークについて検討する。
そこで我々は,異なるチャネル間の空間的および時間的相関を暗黙的に学習するために,MBrainを提案する。
我々のモデルは、最先端のSSLおよび教師なしモデルよりも優れており、臨床に展開する能力を持っている。
論文 参考訳(メタデータ) (2023-06-15T09:14:26Z) - NeuroGraph: Benchmarks for Graph Machine Learning in Brain Connectomics [9.803179588247252]
グラフベースのニューロイメージングデータセットのコレクションであるNeuroGraphを紹介する。
行動的特徴と認知的特徴の複数のカテゴリを予測するための実用性を実証する。
論文 参考訳(メタデータ) (2023-06-09T19:10:16Z) - A Novel Supervised Contrastive Regression Framework for Prediction of
Neurocognitive Measures Using Multi-Site Harmonized Diffusion MRI
Tractography [13.80649748804573]
Supervised Contrastive Regression (SCR)は、回帰タスクにおけるコントラスト学習の完全な監視を可能にする、シンプルで効果的な方法である。
SCRは、連続回帰ラベルの絶対差を用いて教師付きコントラスト表現学習を行う。
SCRは、他の最先端手法と比較して、神経認知的スコア予測の精度を向上する。
論文 参考訳(メタデータ) (2022-10-13T23:24:12Z) - Classification of ADHD Patients Using Kernel Hierarchical Extreme
Learning Machine [3.39487428163997]
我々は、脳機能接続のダイナミクスを利用して、医療画像データの特徴をモデル化する。
その結果,最先端モデルよりも優れた分類率を得た。
論文 参考訳(メタデータ) (2022-06-28T05:17:54Z) - Overcoming the Domain Gap in Contrastive Learning of Neural Action
Representations [60.47807856873544]
神経科学の基本的な目標は、神経活動と行動の関係を理解することである。
我々は,ハエが自然に生み出す行動からなる新しいマルチモーダルデータセットを作成した。
このデータセットと新しい拡張セットは、神経科学における自己教師あり学習手法の適用を加速することを約束します。
論文 参考訳(メタデータ) (2021-11-29T15:27:51Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
本稿では,データ生成プロセスの根底にある因果構造を素早く識別する能動的介入ターゲット機構を提案する。
本手法は,ランダムな介入ターゲティングと比較して,要求される対話回数を大幅に削減する。
シミュレーションデータから実世界のデータまで,複数のベンチマークにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2021-09-06T13:10:37Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z) - Neuro-symbolic Neurodegenerative Disease Modeling as Probabilistic
Programmed Deep Kernels [93.58854458951431]
本稿では、神経変性疾患のパーソナライズされた予測モデリングのための、確率的プログラムによる深層カーネル学習手法を提案する。
我々の分析は、ニューラルネットワークとシンボリック機械学習のアプローチのスペクトルを考慮する。
我々は、アルツハイマー病の予測問題について評価を行い、深層学習を超越した結果を得た。
論文 参考訳(メタデータ) (2020-09-16T15:16:03Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z) - Dynamic Graph Correlation Learning for Disease Diagnosis with Incomplete
Labels [66.57101219176275]
胸部X線画像上の疾患診断は,多ラベル分類の課題である。
本稿では,異なる疾患間の相互依存を調査する新たな視点を提示する病的診断グラフ畳み込みネットワーク(DD-GCN)を提案する。
本手法は,相関学習のための動的隣接行列を用いた特徴写像上のグラフを初めて構築する手法である。
論文 参考訳(メタデータ) (2020-02-26T17:10:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。