論文の概要: Exponentially reduced circuit depths in Lindbladian simulation
- arxiv url: http://arxiv.org/abs/2412.21062v1
- Date: Mon, 30 Dec 2024 16:31:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-31 16:05:39.558429
- Title: Exponentially reduced circuit depths in Lindbladian simulation
- Title(参考訳): リンドブラディアンシミュレーションにおける指数減少回路深さ
- Authors: Wenjun Yu, Xiaogang Li, Qi Zhao, Xiao Yuan,
- Abstract要約: 量子コンピュータはリンドブラディアン力学を効率的にシミュレートすることができ、オープンシステムシミュレーション、熱と基底状態の準備、自律的な量子エラー補正、散逸工学などの強力な応用を可能にする。
既存の手法は、リソース集約型マルチキュービット演算に依存するか、実験的にフレンドリーな手法を用いてシミュレーションエラーを抑えるためにディープ量子回路を利用するか、重大なトレードオフに直面している。
本稿では,回路深度を最小化しつつ,実験的にアクセス可能な効率的なリンドブラディアンシミュレーションフレームワークを提案する。
- 参考スコア(独自算出の注目度): 11.176767117446696
- License:
- Abstract: Quantum computers can efficiently simulate Lindbladian dynamics, enabling powerful applications in open system simulation, thermal and ground-state preparation, autonomous quantum error correction, dissipative engineering, and more. Despite the abundance of well-established algorithms for closed-system dynamics, simulating open quantum systems on digital quantum computers remains challenging due to the intrinsic requirement for non-unitary operations. Existing methods face a critical trade-off: either relying on resource-intensive multi-qubit operations with experimentally challenging approaches or employing deep quantum circuits to suppress simulation errors using experimentally friendly methods. In this work, we challenge this perceived trade-off by proposing an efficient Lindbladian simulation framework that minimizes circuit depths while remaining experimentally accessible. Based on the incoherent linear combination of superoperators, our method achieves exponential reductions in circuit depth using at most two ancilla qubits and the straightforward Trotter decomposition of the process. Furthermore, our approach extends to simulate time-dependent Lindbladian dynamics, achieving logarithmic dependence on the inverse accuracy for the first time. Rigorous numerical simulations demonstrate clear advantages of our method over existing techniques. This work provides a practical and scalable solution for simulating open quantum systems on quantum devices.
- Abstract(参考訳): 量子コンピュータはリンドブラディアン力学を効率的にシミュレートすることができ、オープンシステムシミュレーション、熱と基底状態の準備、自律的な量子エラー補正、散逸工学などの強力な応用を可能にする。
クローズドシステムダイナミクスのための確立されたアルゴリズムが豊富にあるにもかかわらず、デジタル量子コンピュータ上のオープン量子系をシミュレートすることは、非単体演算の本質的な要求のため、依然として困難である。
既存の手法は、実験的に困難なアプローチでリソース集約的なマルチキュービット演算に依存するか、実験的にフレンドリーな手法を用いてシミュレーションエラーを抑えるためにディープ量子回路を使用するか、重大なトレードオフに直面している。
本研究では, 回路深度を最小化しつつ, 実験的にアクセス可能でありながら, 回路深度を最小化する効率的なリンドブラディアンシミュレーションフレームワークを提案することにより, このトレードオフに挑戦する。
スーパー演算子の非コヒーレント線形結合に基づいて,少なくとも2つのアンシラ量子ビットを用いて回路深さを指数関数的に低減し,プロセスのトロッター分解を行う。
さらに,本手法は時間依存性のリンドブラディアン力学をシミュレートし,逆精度の対数的依存性を初めて達成する。
厳密な数値シミュレーションにより,既存の手法よりも明らかな利点が示された。
この研究は、量子デバイス上のオープン量子システムをシミュレートするための実用的でスケーラブルなソリューションを提供する。
関連論文リスト
- Efficient quantum simulation of nonlinear interactions using SNAP and
Rabi gates [0.7366405857677227]
非線形ボソニック力学を効率的にモデル化する決定論的シミュレーション手法を提案する。
提案手法は,高次ボゾン相互作用から生じる現象の高忠実度モデリングを容易にする。
論文 参考訳(メタデータ) (2023-12-15T16:44:43Z) - Efficient quantum algorithm to simulate open systems through a single environmental qubit [0.0]
量子コンピュータ上でのリンドブラッドマスター方程式により記述された開量子系の力学をシミュレーションする効率的なアルゴリズムを提案する。
固定精度条件下では,他の手法と比較してトロッター数を減らすことができる。
論文 参考訳(メタデータ) (2023-11-16T16:45:30Z) - Deep Quantum Circuit Simulations of Low-Energy Nuclear States [51.823503818486394]
深部量子回路の高速数値シミュレーションの進歩について述べる。
21キュービットまでの回路と 115,000,000以上のゲートを効率的にシミュレートできる。
論文 参考訳(メタデータ) (2023-10-26T19:10:58Z) - Overhead-constrained circuit knitting for variational quantum dynamics [0.0]
回路編み込みを用いて、大きな量子システムを小さなサブシステムに分割し、それぞれを別々のデバイスでシミュレートすることができる。
長径ゲートを切断することで回路深度を低減するために,同じ手法が利用できることを示す。
論文 参考訳(メタデータ) (2023-09-14T17:01:06Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
本稿では,回路に最も影響を及ぼす量子回路の断面をピンポイントする手法を提案する。
我々は,IBM量子マシン上に実装されたアルゴリズム回路の例に応用して,提案手法の実用性と有効性を示す。
論文 参考訳(メタデータ) (2022-04-12T19:39:31Z) - Benchmarking a novel efficient numerical method for localized 1D
Fermi-Hubbard systems on a quantum simulator [0.0]
量子シミュレータは,多体系の力学に有効であることを示す。
我々は中性原子Fermi-Hubbard量子シミュレータと$L_textexpsimeq290$格子サイトを用いて、その性能をベンチマークする。
我々はスピン不均衡フェルミ・ハッバード系に対するブロッホ振動の相互作用の振舞いの簡単な予測を導出した。
論文 参考訳(メタデータ) (2021-05-13T16:03:11Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
時間に依存しない深さの量子回路を生成するための構成的アルゴリズムを提案する。
一次元横フィールドXYモデルにおけるアンダーソン局在化を含む、モデルの特殊クラスに対するアルゴリズムを強調する。
幅広いスピンモデルとフェルミオンモデルに対して正確な回路を提供するのに加えて、我々のアルゴリズムは最適なハミルトニアンシミュレーションに関する幅広い解析的および数値的な洞察を提供する。
論文 参考訳(メタデータ) (2021-04-01T19:06:00Z) - Fast and differentiable simulation of driven quantum systems [58.720142291102135]
我々は、ダイソン展開に基づく半解析手法を導入し、標準数値法よりもはるかに高速に駆動量子系を時間発展させることができる。
回路QEDアーキテクチャにおけるトランスモン量子ビットを用いた2量子ゲートの最適化結果を示す。
論文 参考訳(メタデータ) (2020-12-16T21:43:38Z) - Assessment of weak-coupling approximations on a driven two-level system
under dissipation [58.720142291102135]
我々は, 減散を伴うリウヴィル・ヴォン方程式(Liouville-von equation)と呼ばれる数値的正確かつ非摂動的手法を用いて, 駆動量子ビットについて検討した。
我々は、駆動された量子ビットの定常状態を予測する上で、リンドブラッド方程式の妥当性の規則をマップするために実験で用いられる計量を提案する。
論文 参考訳(メタデータ) (2020-11-11T22:45:57Z) - Low-depth Hamiltonian Simulation by Adaptive Product Formula [3.050399782773013]
量子コンピュータ上の量子システムの力学を効率的に研究するために、様々なハミルトンシミュレーションアルゴリズムが提案されている。
本稿では,低深度時間進化回路を構築するための適応的手法を提案する。
我々の研究は、雑音の中規模量子デバイスを用いた実践的なハミルトンシミュレーションに光を当てている。
論文 参考訳(メタデータ) (2020-11-10T18:00:42Z) - Efficient classical simulation of random shallow 2D quantum circuits [104.50546079040298]
ランダム量子回路は古典的にシミュレートするのは難しいと見なされる。
典型例の近似シミュレーションは, 正確なシミュレーションとほぼ同程度に困難であることを示す。
また、十分に浅いランダム回路はより一般的に効率的にシミュレーション可能であると推測する。
論文 参考訳(メタデータ) (2019-12-31T19:00:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。