論文の概要: Interactive Question Clarification in Dialogue via Reinforcement
Learning
- arxiv url: http://arxiv.org/abs/2012.09411v1
- Date: Thu, 17 Dec 2020 06:38:04 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-02 07:30:54.553265
- Title: Interactive Question Clarification in Dialogue via Reinforcement
Learning
- Title(参考訳): 強化学習による対話における対話的質問の明確化
- Authors: Xiang Hu, Zujie Wen, Yafang Wang, Xiaolong Li, Gerard de Melo
- Abstract要約: 本来のクエリの改良を提案することにより,曖昧な質問を明確にする強化モデルを提案する。
モデルは、深いポリシーネットワークで強化学習を使用して訓練されます。
実世界のユーザクリックに基づいてモデルを評価し,大幅な改善を示す。
- 参考スコア(独自算出の注目度): 36.746578601398866
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Coping with ambiguous questions has been a perennial problem in real-world
dialogue systems. Although clarification by asking questions is a common form
of human interaction, it is hard to define appropriate questions to elicit more
specific intents from a user. In this work, we propose a reinforcement model to
clarify ambiguous questions by suggesting refinements of the original query. We
first formulate a collection partitioning problem to select a set of labels
enabling us to distinguish potential unambiguous intents. We list the chosen
labels as intent phrases to the user for further confirmation. The selected
label along with the original user query then serves as a refined query, for
which a suitable response can more easily be identified. The model is trained
using reinforcement learning with a deep policy network. We evaluate our model
based on real-world user clicks and demonstrate significant improvements across
several different experiments.
- Abstract(参考訳): あいまいな質問への対処は、現実世界の対話システムにおける長年の問題である。
質問による明確化はヒューマンインタラクションの一般的な形態であるが,ユーザからより具体的な意図を引き出すための適切な質問を定義することは困難である。
本研究では,元のクエリの改良を提案することにより,あいまいな質問を明確化するための強化モデルを提案する。
まず、コレクション分割問題を定式化し、潜在的な曖昧な意図を区別できるラベルのセットを選択する。
我々は、選択したラベルをインテントフレーズとしてユーザにリストし、さらなる確認を行う。
選択されたラベルと元のユーザクエリは、適切な応答をより容易に識別できる洗練されたクエリとして機能する。
このモデルは、深層ポリシーネットワークを用いた強化学習を用いてトレーニングされる。
我々は,実世界のユーザクリックに基づいてモデルを評価し,いくつかの実験で有意な改善を示す。
関連論文リスト
- Conversational Search with Mixed-Initiative -- Asking Good Clarification
Questions backed-up by Passage Retrieval [9.078765961879467]
我々は,対話型検索のシナリオを混合開始型で扱う。つまり,ユーザ回答,システム回答(明確化質問),ユーザ回答などである。
本研究は,会話の文脈に応じて,次の明確化問題を選択するタスクに焦点をあてる。
提案手法は,関係する候補の明確化質問の初期選択と,それらの候補を再評価するための2つのディープラーニングモデルの微調整に使用される経路探索を利用する。
論文 参考訳(メタデータ) (2021-12-14T11:27:16Z) - Soliciting User Preferences in Conversational Recommender Systems via
Usage-related Questions [21.184555512370093]
項目使用量に基づいて暗黙的な質問を行うことにより、嗜好の誘惑に対する新しいアプローチを提案する。
まず,項目利用情報を含む大規模なレビューコーパスから文を識別する。
そして,ニューラルネットワークモデルを用いて,これらの文から暗黙の選好質問を生成する。
論文 参考訳(メタデータ) (2021-11-26T12:23:14Z) - Multi-stage Clarification in Conversational AI: The case of
Question-Answering Dialogue Systems [0.27998963147546135]
対話型質問応答や会話型検索など,様々な情報検索タスクにおいて,明確化の解決が重要な役割を担っている。
そこで本稿では,質問応答対話システムのコンテキストにおいて,質問の明確化とクエリ選択を促すための多段階的明確化機構を提案する。
提案手法は,ユーザエクスペリエンス全体の改善と,競合するベースラインを2つのデータセットで比較する。
論文 参考訳(メタデータ) (2021-10-28T15:45:44Z) - Building and Evaluating Open-Domain Dialogue Corpora with Clarifying
Questions [65.60888490988236]
オープンドメインのシングルターンとマルチターンの会話に焦点を当てたデータセットをリリースする。
我々は最先端のニューラルベースラインをいくつかベンチマークする。
様々な対話における質問の明確化の質を評価するための,オフラインおよびオンラインのステップからなるパイプラインを提案する。
論文 参考訳(メタデータ) (2021-09-13T09:16:14Z) - A Semantic-based Method for Unsupervised Commonsense Question Answering [40.18557352036813]
ラベル付きタスクデータに依存しないため、教師なしのコモンセンス質問応答は魅力的である。
教師なしコモンセンス質問応答のためのSemantic-based Question Answering法(SEQA)を提案する。
論文 参考訳(メタデータ) (2021-05-31T08:21:52Z) - Learning to Ask Appropriate Questions in Conversational Recommendation [49.31942688227828]
対話型レコメンデーションのための新しいフレームワークであるKnowledge-Based Question Generation System (KBQG)を提案する。
KBQGは、構造化知識グラフから最も関連性の高い関係を識別することにより、ユーザの好みをよりきめ細かな粒度でモデル化する。
最終的には、正確な推奨は会話の順番を少なくして生成できる。
論文 参考訳(メタデータ) (2021-05-11T03:58:10Z) - Dialogue History Matters! Personalized Response Selectionin Multi-turn
Retrieval-based Chatbots [62.295373408415365]
本稿では,コンテキスト応答マッチングのためのパーソナライズドハイブリッドマッチングネットワーク(phmn)を提案する。
1) ユーザ固有の対話履歴からパーソナライズされた発話行動を付加的なマッチング情報として抽出する。
ユーザ識別による2つの大規模データセット,すなわちパーソナライズされた対話 Corpus Ubuntu (P-Ubuntu) とパーソナライズされたWeiboデータセット (P-Weibo) のモデルを評価する。
論文 参考訳(メタデータ) (2021-03-17T09:42:11Z) - Open-Retrieval Conversational Machine Reading [80.13988353794586]
会話機械読解では、システムは自然言語規則を解釈し、ハイレベルな質問に答え、フォローアップの明確化を問う必要がある。
既存の作業では、ルールテキストがユーザ毎の質問に対して提供されると仮定し、実際のシナリオにおいて必須の検索ステップを無視する。
本研究では,対話型機械読解のオープンリトリーバル設定を提案し,検討する。
論文 参考訳(メタデータ) (2021-02-17T08:55:01Z) - Reasoning in Dialog: Improving Response Generation by Context Reading
Comprehension [49.92173751203827]
マルチターンダイアログでは、発話が文の完全な形を取るとは限らない。
読み解きの質問に答えるモデルの能力を検討し、応答生成性能の向上を提案する。
論文 参考訳(メタデータ) (2020-12-14T10:58:01Z) - Saying No is An Art: Contextualized Fallback Responses for Unanswerable
Dialogue Queries [3.593955557310285]
ほとんどの対話システムは、ランク付けされた応答を生成するためのハイブリッドアプローチに依存している。
ユーザクエリに対して文脈的に認識された応答を生成するニューラルネットワークを設計する。
我々の単純なアプローチでは、依存関係解析のルールと、質問応答ペアの合成データに基づいて微調整されたテキストからテキストへの変換を行う。
論文 参考訳(メタデータ) (2020-12-03T12:34:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。