論文の概要: Enhanced Framework of Quantum Approximate Optimization Algorithm and Its
Parameter Setting Strategy
- arxiv url: http://arxiv.org/abs/2012.09626v1
- Date: Wed, 16 Dec 2020 14:40:56 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-20 10:42:53.909179
- Title: Enhanced Framework of Quantum Approximate Optimization Algorithm and Its
Parameter Setting Strategy
- Title(参考訳): 量子近似最適化アルゴリズムの強化フレームワークとそのパラメータ設定戦略
- Authors: Mingyou Wu and Zhihao Liu and Hanwu Chen
- Abstract要約: 量子近似最適化アルゴリズム(QAOA)の強化フレームワークを導入し,パラメータ設定戦略を解析した。
強化されたQAOAはQAOAと同じくらい有効であるが、計算能力と柔軟性が向上している。
最適解は、$O(sqrtN)$よりもはるかに少ない確率で見つかる。
- 参考スコア(独自算出の注目度): 4.082216579462797
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: An enhanced framework of quantum approximate optimization algorithm (QAOA) is
introduced and the parameter setting strategies are analyzed. The enhanced QAOA
is as effective as the QAOA but exhibits greater computing power and
flexibility, and with proper parameters, it can arrive at the optimal solution
faster. Moreover, based on the analysis of this framework, strategies are
provided to select the parameter at a cost of $O(1)$. Simulations are conducted
on randomly generated 3-satisfiability (3-SAT) of scale of 20 qubits and the
optimal solution can be found with a high probability in iterations much less
than $O(\sqrt{N})$
- Abstract(参考訳): 量子近似最適化アルゴリズム(QAOA)の強化フレームワークを導入し,パラメータ設定戦略を解析した。
強化されたQAOAはQAOAと同じくらい有効であるが、計算能力と柔軟性が向上し、適切なパラメータで最適解に素早く到達できる。
さらに、このフレームワークの分析に基づいて、パラメータを$O(1)$のコストで選択するための戦略が提供される。
ランダムに生成された20キュービットの3-SAT(3-SAT)のスケールでシミュレーションを行い、最適解は反復の確率が$O(\sqrt{N})$よりもはるかに低い値で見つかる。
関連論文リスト
- Efficient and Robust Parameter Optimization of the Unitary Coupled-Cluster Ansatz [4.607081302947026]
本稿では、量子コンピュータ上でのユニタリ結合クラスタ・アンサッツのパラメータ最適化のために、近似パラボラ(SOAP)を用いた逐次最適化を提案する。
分子システムに関する数値的なベンチマークでは、SOAPはより高速な収束とノイズに対する堅牢性を達成することが示されている。
SOAPは、2量子ビットモデルシステムを用いた超伝導量子コンピュータの実験によりさらに検証される。
論文 参考訳(メタデータ) (2024-01-10T03:30:39Z) - Iterative Layerwise Training for Quantum Approximate Optimization
Algorithm [0.39945675027960637]
最適化問題の解法における量子近似最適化アルゴリズム(QAOA)の能力は近年,盛んに研究されている。
本稿では,QAOAによる問題解決における最適化コスト削減の可能性を検討する。
論文 参考訳(メタデータ) (2023-09-24T05:12:48Z) - A Depth-Progressive Initialization Strategy for Quantum Approximate
Optimization Algorithm [0.0]
まず,QAOAにおける最適パラメータのパターンを2方向から議論する。
次に、探索空間の境界を決定するために使用される予想の対称性と周期性について議論する。
本稿では,従来の最適パラメータ間の差を考慮し,新しい初期パラメータを予測する戦略を提案する。
論文 参考訳(メタデータ) (2022-09-22T23:49:11Z) - Unsupervised strategies for identifying optimal parameters in Quantum
Approximate Optimization Algorithm [3.508346077709686]
最適化なしでパラメータを設定するための教師なし機械学習手法について検討する。
繰り返しに使用するQAOAパラメータの数が3ドルに制限された場合、これらをRecursive-QAOAで3ドルまで紹介します。
我々は、アングルを広範囲に最適化し、多数のサーキットコールを省く場合と同じような性能を得る。
論文 参考訳(メタデータ) (2022-02-18T19:55:42Z) - Understanding the Effect of Stochasticity in Policy Optimization [86.7574122154668]
最適化手法の優位性は、正確な勾配が用いられるかどうかに大きく依存することを示す。
次に,政策最適化におけるコミット率の概念を紹介する。
第三に、外部のオラクル情報がない場合には、収束を加速するために幾何を利用することと、最適性をほぼ確実に達成することとの間に本質的にトレードオフがあることが示される。
論文 参考訳(メタデータ) (2021-10-29T06:35:44Z) - Parameters Fixing Strategy for Quantum Approximate Optimization
Algorithm [0.0]
そこで本稿では,QAOAをパラメータとして初期化することで,回路深度が大きければ平均で高い近似比を与える手法を提案する。
我々は3つの正則グラフやエルド・オス=ルネニグラフのようなグラフのある種のクラスにおけるマックスカット問題に対する我々の戦略をテストする。
論文 参考訳(メタデータ) (2021-08-11T15:44:16Z) - Momentum Accelerates the Convergence of Stochastic AUPRC Maximization [80.8226518642952]
高精度リコール曲線(AUPRC)に基づく領域の最適化について検討し,不均衡なタスクに広く利用されている。
我々は、$O (1/epsilon4)$のより優れた反復による、$epsilon$定常解を見つけるための新しい運動量法を開発する。
また,O(1/epsilon4)$と同じ複雑さを持つ適応手法の新たなファミリを設計し,実際により高速な収束を享受する。
論文 参考訳(メタデータ) (2021-07-02T16:21:52Z) - Unified Convergence Analysis for Adaptive Optimization with Moving Average Estimator [75.05106948314956]
1次モーメントに対する大きな運動量パラメータの増大は適応的スケーリングに十分であることを示す。
また,段階的に減少するステップサイズに応じて,段階的に運動量を増加させるための洞察を与える。
論文 参考訳(メタデータ) (2021-04-30T08:50:24Z) - Bilevel Optimization: Convergence Analysis and Enhanced Design [63.64636047748605]
バイレベル最適化は多くの機械学習問題に対するツールである。
Stoc-BiO という新しい確率効率勾配推定器を提案する。
論文 参考訳(メタデータ) (2020-10-15T18:09:48Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
QAOA(Quantum Approximate Optimization Algorithm)のようなハイブリッド量子古典アルゴリズムは、短期量子コンピュータを実用的に活用するための最も奨励的なアプローチの1つである。
このようなアルゴリズムは通常変分形式で実装され、古典的な最適化法と量子機械を組み合わせて最適化問題の優れた解を求める。
本研究では,クロスエントロピー法を用いてランドスケープを形作り,古典的パラメータがより容易により良いパラメータを発見でき,その結果,性能が向上することを示す。
論文 参考訳(メタデータ) (2020-03-11T13:52:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。