論文の概要: IowaRain: A Statewide Rain Event Dataset Based on Weather Radars and
Quantitative Precipitation Estimation
- arxiv url: http://arxiv.org/abs/2107.03432v1
- Date: Wed, 7 Jul 2021 18:30:38 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-09 13:23:03.054041
- Title: IowaRain: A Statewide Rain Event Dataset Based on Weather Radars and
Quantitative Precipitation Estimation
- Title(参考訳): iowarain: 気象レーダーと量的降雨推定に基づく州全体の雨イベントデータセット
- Authors: Muhammed Sit, Bong-Chul Seo and Ibrahim Demir
- Abstract要約: 本研究はアイオワ州における降雨イベントの広範なデータセットを提示する。
予測モデリングと規範モデリングの両方に道を開くことで、より優れた災害監視、応答、復旧に使用できる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Effective environmental planning and management to address climate change
could be achieved through extensive environmental modeling with machine
learning and conventional physical models. In order to develop and improve
these models, practitioners and researchers need comprehensive benchmark
datasets that are prepared and processed with environmental expertise that they
can rely on. This study presents an extensive dataset of rainfall events for
the state of Iowa (2016-2019) acquired from the National Weather Service Next
Generation Weather Radar (NEXRAD) system and processed by a quantitative
precipitation estimation system. The dataset presented in this study could be
used for better disaster monitoring, response and recovery by paving the way
for both predictive and prescriptive modeling.
- Abstract(参考訳): 気候変動に対処するための効果的な環境計画と管理は、機械学習と従来の物理モデルによる広範な環境モデリングによって達成できる。
これらのモデルの開発と改善のためには、実践者や研究者は、環境の専門知識によって準備され、処理される包括的なベンチマークデータセットが必要である。
本研究では,国立気象サービス次世代気象レーダ(NEXRAD)システムから取得したアイオワ州(2016-2019)の降雨状況について,定量的降雨量推定システムを用いて解析した。
本研究で提示されたデータセットは,予測モデルと規範モデルの両方への道を開くことによって,災害監視,応答,リカバリに利用することができる。
関連論文リスト
- Deep Learning for Weather Forecasting: A CNN-LSTM Hybrid Model for Predicting Historical Temperature Data [7.559331742876793]
本研究では,畳み込みニューラルネットワーク(CNN)とLong Short-Term Memory(LSTM)を併用したハイブリッドモデルを提案する。
CNNは空間的特徴抽出に利用され、LSTMは時間的依存を処理し、予測精度と安定性が大幅に向上する。
論文 参考訳(メタデータ) (2024-10-19T03:38:53Z) - Data-driven rainfall prediction at a regional scale: a case study with Ghana [4.028179670997471]
最先端の数値天気予報(NWP)モデルは、アフリカの熱帯地域で熟練した降雨予測を作成するのに苦労している。
2つのU-Net畳み込みニューラルネットワーク(CNN)モデルを開発し、12時間と30時間リード時の24時間降雨を予測する。
また,従来のNWPモデルとデータ駆動モデルを組み合わせることにより,予測精度が向上することがわかった。
論文 参考訳(メタデータ) (2024-10-17T22:07:53Z) - Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
地域レベルのダウンストリームタスクに特化して、リミテッド・エリア・モデリングに焦点を合わせ、モデルをトレーニングします。
我々は,気象予報が水資源の管理,農業,極度の気象事象の影響軽減に重要であるという,気象学的課題からMENA地域を考察する。
本研究では,パラメータ効率のよい微調整手法,特にローランド適応(LoRA)とその変種を統合することの有効性を検証することを目的とした。
論文 参考訳(メタデータ) (2024-09-11T19:31:56Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
気象予測において重要な課題であるダウンスケーリングは、ターゲット領域に対する高解像度気象状態の再構築を可能にする。
以前のダウンスケーリング手法には気象学のための調整された設計が欠けており、構造的な限界に遭遇した。
本稿では,多変数相関と地形情報の利用性を高める新しいモデルであるMambaDSを提案する。
論文 参考訳(メタデータ) (2024-08-20T13:45:49Z) - Urban Air Pollution Forecasting: a Machine Learning Approach leveraging Satellite Observations and Meteorological Forecasts [0.11249583407496218]
大気汚染は公衆衛生、特に都市部において重大な脅威となる。
本研究では, センチネル5P衛星のデータ, 気象条件, トポロジカル特性を統合し, 5つの主要な汚染物質の将来レベルを予測する機械学習モデルを提案する。
論文 参考訳(メタデータ) (2024-05-30T10:02:53Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
この研究は、データ駆動型世界天気予報モデルであるFengWu-GHRを、0.09$circ$水平解像度で実行した。
低解像度モデルから事前知識を継承することにより、MLベースの高解像度予測を操作するための扉を開く新しいアプローチを導入する。
2022年の天気予報は、FengWu-GHRがIFS-HRESよりも優れていることを示している。
論文 参考訳(メタデータ) (2024-01-28T13:23:25Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
気象学的ダウンスケーリングを任意の散乱ステーションスケールに拡張し、新しいベンチマークとデータセットを確立する。
データ同化技術にインスパイアされた我々は、観測データをダウンスケーリングプロセスに統合し、マルチスケールの観測先行情報を提供する。
提案手法は、複数の曲面変数上で、他の特別に設計されたベースラインモデルよりも優れている。
論文 参考訳(メタデータ) (2024-01-22T14:02:56Z) - A Distributed Approach to Meteorological Predictions: Addressing Data
Imbalance in Precipitation Prediction Models through Federated Learning and
GANs [0.0]
気象データの分類は、気象現象をクラスに分類することで、微妙な分析と正確な予測を容易にする。
分類アルゴリズムは、データ不均衡のような課題を巧みにナビゲートすることが不可欠である。
データ拡張技術は、稀だが重要な気象事象を分類する際のモデルの精度を向上させることができる。
論文 参考訳(メタデータ) (2023-10-19T21:28:20Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
農業計画や保険には1年前から予測される高品質の干ばつが不可欠だ。
私たちは、体系的なエンドツーエンドアプローチを採用するエンドツーエンドアプローチを導入することで、干ばつデータに取り組みます。
主な発見は、TransformerモデルであるEarthFormerが、正確な短期(最大6ヶ月)の予測を行う際の例外的なパフォーマンスである。
論文 参考訳(メタデータ) (2023-09-12T13:28:06Z) - RainBench: Towards Global Precipitation Forecasting from Satellite
Imagery [6.462260770989231]
極端に降水するイベントは、発展途上国の経済と生活を定期的に破壊する。
データ駆動型ディープラーニングアプローチは、正確な複数日予測へのアクセスを広げる可能性がある。
現在、世界的な降雨予測の研究に特化したベンチマークデータセットは存在しない。
論文 参考訳(メタデータ) (2020-12-17T15:35:24Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
本研究では,500hPaの圧力レベル,2m温度,24時間の総降水量を予測するために,条件付き深部畳み込み生成対向ネットワークを用いた。
提案されたモデルは、2019年に関連する気象分野を予測することを目的として、2015年から2018年までの4年間のERA5の再分析データに基づいて訓練されている。
論文 参考訳(メタデータ) (2020-06-13T20:53:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。