Compiler Design for Distributed Quantum Computing
- URL: http://arxiv.org/abs/2012.09680v1
- Date: Thu, 17 Dec 2020 15:48:32 GMT
- Title: Compiler Design for Distributed Quantum Computing
- Authors: Davide Ferrari, Angela Sara Cacciapuoti, Michele Amoretti and Marcello
Caleffi
- Abstract summary: We discuss the main challenges arising with compiler design for distributed quantum computing.
We analytically derive an upper bound of the overhead induced by quantum compilation for distributed quantum computing.
The derived bound accounts for the overhead induced by the underlying computing architecture as well as the additional overhead induced by the sub-optimal quantum compiler.
- Score: 6.423239719448169
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In distributed quantum computing architectures, with the network and
communications functionalities provided by the Quantum Internet, remote quantum
processing units (QPUs) can communicate and cooperate for executing
computational tasks that single NISQ devices cannot handle by themselves. To
this aim, distributed quantum computing requires a new generation of quantum
compilers, for mapping any quantum algorithm to any distributed quantum
computing architecture. With this perspective, in this paper, we first discuss
the main challenges arising with compiler design for distributed quantum
computing. Then, we analytically derive an upper bound of the overhead induced
by quantum compilation for distributed quantum computing. The derived bound
accounts for the overhead induced by the underlying computing architecture as
well as the additional overhead induced by the sub-optimal quantum compiler --
expressly designed through the paper to achieve three key features, namely,
general-purpose, efficient and effective. Finally, we validate the analytical
results and we confirm the validity of the compiler design through an extensive
performance analysis.
Related papers
- Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - The Basis of Design Tools for Quantum Computing: Arrays, Decision
Diagrams, Tensor Networks, and ZX-Calculus [55.58528469973086]
Quantum computers promise to efficiently solve important problems classical computers never will.
A fully automated quantum software stack needs to be developed.
This work provides a look "under the hood" of today's tools and showcases how these means are utilized in them, e.g., for simulation, compilation, and verification of quantum circuits.
arXiv Detail & Related papers (2023-01-10T19:00:00Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - The Future of Quantum Computing with Superconducting Qubits [2.6668731290542222]
We see a branching point in computing paradigms with the emergence of quantum processing units (QPUs)
Extracting the full potential of computation and realizing quantum algorithms with a super-polynomial speedup will most likely require major advances in quantum error correction technology.
Long term, we see hardware that exploits qubit connectivity in higher than 2D topologies to realize more efficient quantum error correcting codes.
arXiv Detail & Related papers (2022-09-14T18:00:03Z) - Full-stack quantum computing systems in the NISQ era: algorithm-driven
and hardware-aware compilation techniques [1.3496450124792878]
We will provide an overview on current full-stack quantum computing systems.
We will emphasize the need for tight co-design among adjacent layers as well as vertical cross-layer design.
arXiv Detail & Related papers (2022-04-13T13:26:56Z) - Qurzon: A Prototype for a Divide and Conquer Based Quantum Compiler [2.8873930745906957]
This paper introduces textbfQurzon, a proposed novel quantum compiler.
It incorporates the marriage of techniques of divide and compute with the state-of-the-art algorithms of optimal qubit placement.
A scheduling algorithm is also introduced within the compiler that can explore the power of distributed quantum computing.
arXiv Detail & Related papers (2021-09-15T04:53:04Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - Distributed Quantum Computing with QMPI [11.71212583708166]
We introduce an extension of the Message Passing Interface (MPI) to enable high-performance implementations of distributed quantum algorithms.
In addition to a prototype implementation of quantum MPI, we present a performance model for distributed quantum computing, SENDQ.
arXiv Detail & Related papers (2021-05-03T18:30:43Z) - Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale [57.84751206630535]
We present a modernized version of the Quantum Virtual Machine (TNQVM) which serves as a quantum circuit simulation backend in the e-scale ACCelerator (XACC) framework.
The new version is based on the general purpose, scalable network processing library, ExaTN, and provides multiple quantum circuit simulators.
By combining the portable XACC quantum processors and the scalable ExaTN backend we introduce an end-to-end virtual development environment which can scale from laptops to future exascale platforms.
arXiv Detail & Related papers (2021-04-21T13:26:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.