論文の概要: MASSIVE: Tractable and Robust Bayesian Learning of Many-Dimensional
Instrumental Variable Models
- arxiv url: http://arxiv.org/abs/2012.10141v1
- Date: Fri, 18 Dec 2020 10:06:55 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-01 18:26:16.986798
- Title: MASSIVE: Tractable and Robust Bayesian Learning of Many-Dimensional
Instrumental Variable Models
- Title(参考訳): MASSIVE:多次元楽器変数モデルのトラクタブルおよびロバストベイズ学習
- Authors: Ioan Gabriel Bucur, Tom Claassen and Tom Heskes
- Abstract要約: モデル不確実性を考慮した汎用的かつ効率的な因果推論アルゴリズムを提案する。
いくつかの候補が(近い)有効である限り、どの候補が先験的かを知ることなく、それらの集団が目標との相互作用に十分な制限を課し、信頼できる因果効果の推定を得る。
- 参考スコア(独自算出の注目度): 8.271859911016719
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The recent availability of huge, many-dimensional data sets, like those
arising from genome-wide association studies (GWAS), provides many
opportunities for strengthening causal inference. One popular approach is to
utilize these many-dimensional measurements as instrumental variables
(instruments) for improving the causal effect estimate between other pairs of
variables. Unfortunately, searching for proper instruments in a
many-dimensional set of candidates is a daunting task due to the intractable
model space and the fact that we cannot directly test which of these candidates
are valid, so most existing search methods either rely on overly stringent
modeling assumptions or fail to capture the inherent model uncertainty in the
selection process. We show that, as long as at least some of the candidates are
(close to) valid, without knowing a priori which ones, they collectively still
pose enough restrictions on the target interaction to obtain a reliable causal
effect estimate. We propose a general and efficient causal inference algorithm
that accounts for model uncertainty by performing Bayesian model averaging over
the most promising many-dimensional instrumental variable models, while at the
same time employing weaker assumptions regarding the data generating process.
We showcase the efficiency, robustness and predictive performance of our
algorithm through experimental results on both simulated and real-world data.
- Abstract(参考訳): 最近のゲノムワイドアソシエーション研究(gwas)のような、巨大で多次元のデータセットは、因果推論を強化する多くの機会を提供している。
一般的なアプローチの1つは、これらの多次元測定を機器変数(インストゥルメント)として、他の変数間の因果効果推定を改善することである。
残念なことに、多次元の候補集合における適切な機器の探索は、難解なモデル空間と、これらの候補のどれが妥当であるかを直接テストできないことによる厄介な作業である。
我々は,少なくとも一部の候補が (近い) 有効である限り, 先行する候補を知らずに, 集合的に目標との相互作用に十分な制限を課して, 信頼できる因果効果推定が得られることを示す。
本稿では,最も有望な多次元インスツルメンタル変数モデルに対してベイズモデル平均化を行うことにより,モデル不確実性を考慮に入れた汎用的で効率的な因果推論アルゴリズムを提案する。
シミュレーションおよび実世界のデータを用いた実験結果により, アルゴリズムの効率性, 堅牢性, 予測性能を示す。
関連論文リスト
- Continuous Bayesian Model Selection for Multivariate Causal Discovery [22.945274948173182]
現在の因果的発見アプローチは、構造的識別可能性を確保するために、限定的なモデル仮定や介入データへのアクセスを必要とする。
近年の研究では、ベイズモデルの選択はより柔軟な仮定のために制限的モデリングを交換することで精度を大幅に向上させることができることが示されている。
合成データセットと実世界のデータセットの両方において、我々のアプローチの競争力を実証する。
論文 参考訳(メタデータ) (2024-11-15T12:55:05Z) - Modeling Boundedly Rational Agents with Latent Inference Budgets [56.24971011281947]
エージェントの計算制約を明示的にモデル化する潜在推論予算モデル(L-IBM)を導入する。
L-IBMは、最適なアクターの多様な集団のデータを使ってエージェントモデルを学ぶことができる。
我々は,L-IBMが不確実性の下での意思決定のボルツマンモデルに適合しているか,あるいは上回っていることを示す。
論文 参考訳(メタデータ) (2023-12-07T03:55:51Z) - Balancing Act: Constraining Disparate Impact in Sparse Models [20.058720715290434]
本研究では,プルーニングの異なる影響に直接対処する制約付き最適化手法を提案する。
我々の定式化は、各部分群に対する密度モデルとスパースモデルの間の精度変化を束縛する。
実験により,本手法は大規模モデルや数百の保護されたサブグループに関わる問題に対して確実にスケール可能であることが示された。
論文 参考訳(メタデータ) (2023-10-31T17:37:35Z) - Variable Importance Matching for Causal Inference [73.25504313552516]
これらの目標を達成するためのModel-to-Matchと呼ばれる一般的なフレームワークについて説明する。
Model-to-Matchは、距離メートル法を構築するために変数重要度測定を使用する。
LASSO を用いて Model-to-Match フレームワークを運用する。
論文 参考訳(メタデータ) (2023-02-23T00:43:03Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
カラムワイズモデルを適応的かつ自動的に構成するための一般化反復計算フレームワークを提案する。
既製の学習者,シミュレータ,インターフェースを備えた具体的な実装を提供する。
論文 参考訳(メタデータ) (2022-06-15T19:10:35Z) - Uncertainty Estimation for Language Reward Models [5.33024001730262]
言語モデルは、テキストコーパスの教師なしトレーニングからさまざまな能力を学ぶことができる。
人間がラベル付きデータを提供するよりも選択肢を選択する方が簡単であり、事前の作業はそのような選好比較から報酬モデルをトレーニングすることで最先端のパフォーマンスを達成した。
能動的学習とリスク-逆強化学習を用いてサンプル効率とロバスト性を向上させる不確実性推定によるこれらの問題に対処することを模索する。
論文 参考訳(メタデータ) (2022-03-14T20:13:21Z) - On Statistical Efficiency in Learning [37.08000833961712]
モデルフィッティングとモデル複雑性のバランスをとるためのモデル選択の課題に対処する。
モデルの複雑さを順次拡大し、選択安定性を高め、コストを削減するオンラインアルゴリズムを提案します。
実験の結果, 提案手法は予測能力が高く, 計算コストが比較的低いことがわかった。
論文 参考訳(メタデータ) (2020-12-24T16:08:29Z) - Efficient Ensemble Model Generation for Uncertainty Estimation with
Bayesian Approximation in Segmentation [74.06904875527556]
アンサンブルセグメンテーションモデルを構築するための汎用的で効率的なセグメンテーションフレームワークを提案する。
提案手法では,層選択法を用いて効率よくアンサンブルモデルを生成することができる。
また,新たな画素単位の不確実性損失を考案し,予測性能を向上する。
論文 参考訳(メタデータ) (2020-05-21T16:08:38Z) - Amortized Bayesian model comparison with evidential deep learning [0.12314765641075436]
本稿では,専門的なディープラーニングアーキテクチャを用いたベイズモデルの比較手法を提案する。
提案手法は純粋にシミュレーションベースであり,観測された各データセットに対して,すべての代替モデルを明示的に適合させるステップを回避している。
提案手法は,本研究で検討した事例に対して,精度,キャリブレーション,効率の点で優れた結果が得られることを示す。
論文 参考訳(メタデータ) (2020-04-22T15:15:46Z) - Ambiguity in Sequential Data: Predicting Uncertain Futures with
Recurrent Models [110.82452096672182]
逐次データによる曖昧な予測を扱うために,Multiple hypothesis Prediction(MHP)モデルの拡張を提案する。
また、不確実性を考慮するのに適した曖昧な問題に対する新しい尺度も導入する。
論文 参考訳(メタデータ) (2020-03-10T09:15:42Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
数ショットのメトリックベースのアプローチのための一般的なトランスダクティブ推論手法は、最も確実なクエリ例の平均で、各クラスのプロトタイプを更新することである。
本稿では,各クエリの信頼度をメタラーニングして,ラベルのないクエリに最適な重みを割り当てる手法を提案する。
4つのベンチマークデータセットに対してメタ学習の信頼度で、少数ショットの学習モデルを検証した。
論文 参考訳(メタデータ) (2020-02-27T10:22:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。