論文の概要: Continuous Bayesian Model Selection for Multivariate Causal Discovery
- arxiv url: http://arxiv.org/abs/2411.10154v1
- Date: Fri, 15 Nov 2024 12:55:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-18 15:39:20.835586
- Title: Continuous Bayesian Model Selection for Multivariate Causal Discovery
- Title(参考訳): 多変量因果探索のための連続ベイズモデル選択
- Authors: Anish Dhir, Ruby Sedgwick, Avinash Kori, Ben Glocker, Mark van der Wilk,
- Abstract要約: 現在の因果的発見アプローチは、構造的識別可能性を確保するために、限定的なモデル仮定や介入データへのアクセスを必要とする。
近年の研究では、ベイズモデルの選択はより柔軟な仮定のために制限的モデリングを交換することで精度を大幅に向上させることができることが示されている。
合成データセットと実世界のデータセットの両方において、我々のアプローチの競争力を実証する。
- 参考スコア(独自算出の注目度): 22.945274948173182
- License:
- Abstract: Current causal discovery approaches require restrictive model assumptions or assume access to interventional data to ensure structure identifiability. These assumptions often do not hold in real-world applications leading to a loss of guarantees and poor accuracy in practice. Recent work has shown that, in the bivariate case, Bayesian model selection can greatly improve accuracy by exchanging restrictive modelling for more flexible assumptions, at the cost of a small probability of error. We extend the Bayesian model selection approach to the important multivariate setting by making the large discrete selection problem scalable through a continuous relaxation. We demonstrate how for our choice of Bayesian non-parametric model, the Causal Gaussian Process Conditional Density Estimator (CGP-CDE), an adjacency matrix can be constructed from the model hyperparameters. This adjacency matrix is then optimised using the marginal likelihood and an acyclicity regulariser, outputting the maximum a posteriori causal graph. We demonstrate the competitiveness of our approach on both synthetic and real-world datasets, showing it is possible to perform multivariate causal discovery without infeasible assumptions using Bayesian model selection.
- Abstract(参考訳): 現在の因果的発見アプローチは、構造的識別可能性を確保するために、限定的なモデル仮定や介入データへのアクセスを必要とする。
これらの仮定は、現実のアプリケーションでは、保証の喪失と実際の精度の低下につながることがしばしばある。
近年の研究では、バイエルンのモデル選択は、より柔軟な仮定のために制限的モデリングを交換することで、誤差の少ないコストで精度を大幅に向上させることができることが示されている。
我々はベイズモデル選択アプローチを、連続緩和を通じて大きな離散選択問題をスケーラブルにすることで、重要な多変量設定に拡張する。
ベイズ的非パラメトリックモデル (Causal Gaussian Process Conditional Density Estimator, CGP-CDE) の選択について, モデルハイパーパラメータから近似行列を構築する方法を示す。
この隣接行列は、限界確率と非巡回正規化器を用いて最適化され、最大 A の因果グラフを出力する。
本研究では, ベイズモデル選択を用いて, 多変量因果探索を可能とし, 多変量因果探索を可能とし, 提案手法の競争力を実証する。
関連論文リスト
- Robust Gaussian Processes via Relevance Pursuit [17.39376866275623]
本稿では,データポイント固有ノイズレベルを推定することにより,スパースアウトレーヤに対するロバスト性を実現するGPモデルを提案する。
我々は,データポイント固有ノイズ分散において,関連する対数限界確率が強く抑制されるようなパラメータ化が可能であることを,驚くべきことに示している。
論文 参考訳(メタデータ) (2024-10-31T17:59:56Z) - Calibrating Neural Simulation-Based Inference with Differentiable
Coverage Probability [50.44439018155837]
ニューラルモデルのトレーニング目的に直接キャリブレーション項を含めることを提案する。
古典的なキャリブレーション誤差の定式化を緩和することにより、エンドツーエンドのバックプロパゲーションを可能にする。
既存の計算パイプラインに直接適用でき、信頼性の高いブラックボックス後部推論が可能である。
論文 参考訳(メタデータ) (2023-10-20T10:20:45Z) - Stable Training of Probabilistic Models Using the Leave-One-Out Maximum Log-Likelihood Objective [0.7373617024876725]
カーネル密度推定(KDE)に基づくモデルは、このタスクの一般的な選択であるが、密度の異なるデータ領域に適応できない。
適応的なKDEモデルを用いてこれを回避し、モデル内の各カーネルは個別の帯域幅を持つ。
最適化速度を確実に高速化するために改良された期待最大化アルゴリズムを用いる。
論文 参考訳(メタデータ) (2023-10-05T14:08:42Z) - Bivariate Causal Discovery using Bayesian Model Selection [11.726586969589]
ベイズ的枠組みに因果仮定を組み込む方法について述べる。
これにより、現実的な仮定でモデルを構築することができます。
その後、幅広いベンチマークデータセットにおいて、従来の手法よりも優れています。
論文 参考訳(メタデータ) (2023-06-05T14:51:05Z) - A Variational Inference Approach to Inverse Problems with Gamma
Hyperpriors [60.489902135153415]
本稿では,ガンマハイパープライヤを用いた階層的逆問題に対する変分反復交替方式を提案する。
提案した変分推論手法は正確な再構成を行い、意味のある不確実な定量化を提供し、実装が容易である。
論文 参考訳(メタデータ) (2021-11-26T06:33:29Z) - Modeling the Second Player in Distributionally Robust Optimization [90.25995710696425]
我々は、最悪のケース分布を特徴付けるために神経生成モデルを使うことを議論する。
このアプローチは多くの実装と最適化の課題をもたらします。
提案されたアプローチは、同等のベースラインよりも堅牢なモデルを生み出す。
論文 参考訳(メタデータ) (2021-03-18T14:26:26Z) - Gaussian Process Latent Class Choice Models [7.992550355579791]
離散選択モデル(DCM)における確率的機械学習の非パラメトリッククラスを提案する。
提案モデルでは,GPを用いた行動同質クラスタ(ラテントクラス)に確率的に個人を割り当てる。
モデルは2つの異なるモード選択アプリケーションでテストされ、異なるLCCMベンチマークと比較される。
論文 参考訳(メタデータ) (2021-01-28T19:56:42Z) - On Statistical Efficiency in Learning [37.08000833961712]
モデルフィッティングとモデル複雑性のバランスをとるためのモデル選択の課題に対処する。
モデルの複雑さを順次拡大し、選択安定性を高め、コストを削減するオンラインアルゴリズムを提案します。
実験の結果, 提案手法は予測能力が高く, 計算コストが比較的低いことがわかった。
論文 参考訳(メタデータ) (2020-12-24T16:08:29Z) - Identification of Probability weighted ARX models with arbitrary domains [75.91002178647165]
PieceWise Affineモデルは、ハイブリッドシステムの他のクラスに対する普遍近似、局所線型性、同値性を保証する。
本研究では,任意の領域を持つ固有入力モデル(NPWARX)を用いたPieceWise Auto Regressiveの同定に着目する。
このアーキテクチャは、機械学習の分野で開発されたMixture of Expertの概念に従って考案された。
論文 参考訳(メタデータ) (2020-09-29T12:50:33Z) - Efficient Ensemble Model Generation for Uncertainty Estimation with
Bayesian Approximation in Segmentation [74.06904875527556]
アンサンブルセグメンテーションモデルを構築するための汎用的で効率的なセグメンテーションフレームワークを提案する。
提案手法では,層選択法を用いて効率よくアンサンブルモデルを生成することができる。
また,新たな画素単位の不確実性損失を考案し,予測性能を向上する。
論文 参考訳(メタデータ) (2020-05-21T16:08:38Z) - Decision-Making with Auto-Encoding Variational Bayes [71.44735417472043]
変分分布とは異なる後部近似を用いて意思決定を行うことが示唆された。
これらの理論的な結果から,最適モデルに関するいくつかの近似的提案を学習することを提案する。
おもちゃの例に加えて,単細胞RNAシークエンシングのケーススタディも紹介する。
論文 参考訳(メタデータ) (2020-02-17T19:23:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。