MASSIVE: Tractable and Robust Bayesian Learning of Many-Dimensional
Instrumental Variable Models
- URL: http://arxiv.org/abs/2012.10141v1
- Date: Fri, 18 Dec 2020 10:06:55 GMT
- Title: MASSIVE: Tractable and Robust Bayesian Learning of Many-Dimensional
Instrumental Variable Models
- Authors: Ioan Gabriel Bucur, Tom Claassen and Tom Heskes
- Abstract summary: We propose a general and efficient causal inference algorithm that accounts for model uncertainty.
We show that, as long as some of the candidates are (close to) valid, without knowing a priori which ones, they collectively still pose enough restrictions on the target interaction to obtain a reliable causal effect estimate.
- Score: 8.271859911016719
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The recent availability of huge, many-dimensional data sets, like those
arising from genome-wide association studies (GWAS), provides many
opportunities for strengthening causal inference. One popular approach is to
utilize these many-dimensional measurements as instrumental variables
(instruments) for improving the causal effect estimate between other pairs of
variables. Unfortunately, searching for proper instruments in a
many-dimensional set of candidates is a daunting task due to the intractable
model space and the fact that we cannot directly test which of these candidates
are valid, so most existing search methods either rely on overly stringent
modeling assumptions or fail to capture the inherent model uncertainty in the
selection process. We show that, as long as at least some of the candidates are
(close to) valid, without knowing a priori which ones, they collectively still
pose enough restrictions on the target interaction to obtain a reliable causal
effect estimate. We propose a general and efficient causal inference algorithm
that accounts for model uncertainty by performing Bayesian model averaging over
the most promising many-dimensional instrumental variable models, while at the
same time employing weaker assumptions regarding the data generating process.
We showcase the efficiency, robustness and predictive performance of our
algorithm through experimental results on both simulated and real-world data.
Related papers
- Continuous Bayesian Model Selection for Multivariate Causal Discovery [22.945274948173182]
Current causal discovery approaches require restrictive model assumptions or assume access to interventional data to ensure structure identifiability.
Recent work has shown that Bayesian model selection can greatly improve accuracy by exchanging restrictive modelling for more flexible assumptions.
We demonstrate the competitiveness of our approach on both synthetic and real-world datasets.
arXiv Detail & Related papers (2024-11-15T12:55:05Z) - Modeling Boundedly Rational Agents with Latent Inference Budgets [56.24971011281947]
We introduce a latent inference budget model (L-IBM) that models agents' computational constraints explicitly.
L-IBMs make it possible to learn agent models using data from diverse populations of suboptimal actors.
We show that L-IBMs match or outperform Boltzmann models of decision-making under uncertainty.
arXiv Detail & Related papers (2023-12-07T03:55:51Z) - Balancing Act: Constraining Disparate Impact in Sparse Models [20.058720715290434]
We propose a constrained optimization approach that directly addresses the disparate impact of pruning.
Our formulation bounds the accuracy change between the dense and sparse models, for each sub-group.
Experimental results demonstrate that our technique scales reliably to problems involving large models and hundreds of protected sub-groups.
arXiv Detail & Related papers (2023-10-31T17:37:35Z) - Variable Importance Matching for Causal Inference [73.25504313552516]
We describe a general framework called Model-to-Match that achieves these goals.
Model-to-Match uses variable importance measurements to construct a distance metric.
We operationalize the Model-to-Match framework with LASSO.
arXiv Detail & Related papers (2023-02-23T00:43:03Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - Uncertainty Estimation for Language Reward Models [5.33024001730262]
Language models can learn a range of capabilities from unsupervised training on text corpora.
It is often easier for humans to choose between options than to provide labeled data, and prior work has achieved state-of-the-art performance by training a reward model from such preference comparisons.
We seek to address these problems via uncertainty estimation, which can improve sample efficiency and robustness using active learning and risk-averse reinforcement learning.
arXiv Detail & Related papers (2022-03-14T20:13:21Z) - On Statistical Efficiency in Learning [37.08000833961712]
We address the challenge of model selection to strike a balance between model fitting and model complexity.
We propose an online algorithm that sequentially expands the model complexity to enhance selection stability and reduce cost.
Experimental studies show that the proposed method has desirable predictive power and significantly less computational cost than some popular methods.
arXiv Detail & Related papers (2020-12-24T16:08:29Z) - Efficient Ensemble Model Generation for Uncertainty Estimation with
Bayesian Approximation in Segmentation [74.06904875527556]
We propose a generic and efficient segmentation framework to construct ensemble segmentation models.
In the proposed method, ensemble models can be efficiently generated by using the layer selection method.
We also devise a new pixel-wise uncertainty loss, which improves the predictive performance.
arXiv Detail & Related papers (2020-05-21T16:08:38Z) - Amortized Bayesian model comparison with evidential deep learning [0.12314765641075436]
We propose a novel method for performing Bayesian model comparison using specialized deep learning architectures.
Our method is purely simulation-based and circumvents the step of explicitly fitting all alternative models under consideration to each observed dataset.
We show that our method achieves excellent results in terms of accuracy, calibration, and efficiency across the examples considered in this work.
arXiv Detail & Related papers (2020-04-22T15:15:46Z) - Ambiguity in Sequential Data: Predicting Uncertain Futures with
Recurrent Models [110.82452096672182]
We propose an extension of the Multiple Hypothesis Prediction (MHP) model to handle ambiguous predictions with sequential data.
We also introduce a novel metric for ambiguous problems, which is better suited to account for uncertainties.
arXiv Detail & Related papers (2020-03-10T09:15:42Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
A popular transductive inference technique for few-shot metric-based approaches, is to update the prototype of each class with the mean of the most confident query examples.
We propose to meta-learn the confidence for each query sample, to assign optimal weights to unlabeled queries.
We validate our few-shot learning model with meta-learned confidence on four benchmark datasets.
arXiv Detail & Related papers (2020-02-27T10:22:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.