A natural heavy-hole flopping mode qubit in germanium
- URL: http://arxiv.org/abs/2012.10214v1
- Date: Fri, 18 Dec 2020 13:17:52 GMT
- Title: A natural heavy-hole flopping mode qubit in germanium
- Authors: Philipp M. Mutter, Guido Burkard
- Abstract summary: Flopping mode qubits in double quantum dots (DQDs) allow for coherent spin-photon hybridization and fast qubit gates.
electronic systems rely on synthetic spin-orbit interaction (SOI) by means of a magnetic field gradient as a coupling mechanism.
We show that this challenging experimental setup can be avoided in heavy-hole (HH) systems in germanium (Ge) by utilizing the sizeable cubic Rashba SOI.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Flopping mode qubits in double quantum dots (DQDs) allow for coherent
spin-photon hybridization and fast qubit gates when coupled to either an
alternating external or a quantized cavity electric field. To achieve this,
however, electronic systems rely on synthetic spin-orbit interaction (SOI) by
means of a magnetic field gradient as a coupling mechanism. Here we
theoretically show that this challenging experimental setup can be avoided in
heavy-hole (HH) systems in germanium (Ge) by utilizing the sizeable cubic
Rashba SOI. We argue that the resulting natural flopping mode qubit possesses
highly tunable spin coupling strengths that allow for one- and two-qubit gate
times in the nanosecond range when the system is designed to function in an
optimal operation mode which we quantify.
Related papers
- Cavity-mediated entanglement of parametrically driven spin qubits via
sidebands [0.0]
We consider a pair of quantum dot-based spin qubits that interact via microwave photons in a superconducting cavity, and that are also parametrically driven by separate external electric fields.
We show that the sidebands generated via the driving fields enable highly tunable qubit-qubit entanglement using only ac control.
arXiv Detail & Related papers (2023-07-12T10:35:43Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Enhancing the Coherence of Superconducting Quantum Bits with Electric
Fields [62.997667081978825]
We show that qubit coherence can be improved by tuning defects away from the qubit resonance using an applied DC-electric field.
We also discuss how local gate electrodes can be implemented in superconducting quantum processors to enable simultaneous in-situ coherence optimization of individual qubits.
arXiv Detail & Related papers (2022-08-02T16:18:30Z) - Gate-Tunable Spin-Orbit Coupling in a Germanium Hole Double Quantum Dot [19.029069649697824]
Hole spins confined in semiconductor quantum dot systems have gained considerable interest for their strong spin-orbit interactions (SOIs)
Here we experimentally demonstrate a tunable SOI in a double quantum dot in a Germanium (Ge) hut wire (HW)
This tunability of the SOI could pave the way toward the realization of high-fidelity qubits in Ge HW systems.
arXiv Detail & Related papers (2022-06-08T02:44:31Z) - Accelerated adiabatic passage in cavity magnomechanics [0.0]
Cavity magnomechanics provides a readily-controllable hybrid system, that consisted of cavity mode, magnon mode, and phonon mode, for quantum state manipulation.
We propose two accelerated adiabatic-passage protocols based on the counterdiabatic Hamiltonian for transitionless quantum driving.
arXiv Detail & Related papers (2022-01-29T09:24:34Z) - A low-loss ferrite circulator as a tunable chiral quantum system [108.66477491099887]
We demonstrate a low-loss waveguide circulator constructed with single-crystalline yttrium iron garnet (YIG) in a 3D cavity.
We show the coherent coupling of its chiral internal modes with integrated superconducting niobium cavities.
We also probe experimentally the effective non-Hermitian dynamics of this system and its effective non-reciprocal eigenmodes.
arXiv Detail & Related papers (2021-06-21T17:34:02Z) - Flopping-mode electric dipole spin resonance in phosphorus donor qubits
in silicon [0.0]
Single spin qubits based on phosphorus donors in silicon are a promising candidate for a large-scale quantum computer.
We present a proposal for a flopping-mode electric dipole spin resonance qubit based on the combined electron and nuclear spin states of a double phosphorus donor quantum dot.
arXiv Detail & Related papers (2021-05-06T18:11:00Z) - Superposition of two-mode squeezed states for quantum information
processing and quantum sensing [55.41644538483948]
We investigate superpositions of two-mode squeezed states (TMSSs)
TMSSs have potential applications to quantum information processing and quantum sensing.
arXiv Detail & Related papers (2021-02-01T18:09:01Z) - Fast high-fidelity single-qubit gates for flip-flop qubits in silicon [68.8204255655161]
flip-flop qubit is encoded in the states with antiparallel donor-bound electron and donor nuclear spins in silicon.
We study the multilevel system that is formed by the interacting electron and nuclear spins.
We propose an optimal control scheme that produces fast and robust single-qubit gates in the presence of low-frequency noise.
arXiv Detail & Related papers (2021-01-27T18:37:30Z) - Quantum Embedded Superstates [0.0]
Superstates can support ultranarrow lines in scattering spectra associated with quasi bound states in the continuum (quasi-BIC)
These modes are of great interest for sensing applications as they enable compact systems with unprecedented sensitivity.
Here, we unveil that a three-level quantum system can be tailored to support the quantum analog of an embedded superstate with an unboundedly narrow emission line.
arXiv Detail & Related papers (2020-07-27T21:01:11Z) - Entanglement generation via power-of-SWAP operations between dynamic
electron-spin qubits [62.997667081978825]
Surface acoustic waves (SAWs) can create moving quantum dots in piezoelectric materials.
We show how electron-spin qubits located on dynamic quantum dots can be entangled.
arXiv Detail & Related papers (2020-01-15T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.